Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Leukemia ; 12(4): 554-62, 1998 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-9557614

RESUMEN

The chimeric receptor, RARalpha/VDR, contains the DNA-binding domain of the retinoic acid receptor (RARalpha) and the ligand-binding domain of the vitamin D receptor (VDR). The ligand-binding properties of RARalpha/VDR are equivalent to that of VDR, with an observed Kd for 1alpha,25 dihydroxy-vitamin D3 (D3) of 0.5 nM. In CV-1 cells, both RARalpha and RARalpha/VDR induce comparable levels of ligand-mediated transcriptional activity from the retinoic acid responsive reporter gene, beta(RARE)3-TK-luciferase, in the presence of the ligand predicted from the receptor ligand-binding domain. Two chimeric RAR receptors were constructed which contained the ligand-binding domain of the estrogen receptor (ER): RARalpha/ER and ER/RARalpha/ER. Both RARalpha/ER and ER/RARalpha/ER bind beta-estradiol with high affinity, and are transcriptionally active only from palindromic RAREs (TREpal and/or (TRE3)3). Only RARalpha/VDR matched in kind and degree the functional characteristics of RARalpha: (1) maximally active from the beta(RARE); (2) moderately active from the TREs; (3) inactive from the retinoic X receptor response elements (RXREs) ApoA1 and CRBP II; (4) forms heterodimers with RXRalpha; and (5) binds to the betaRARE. F9 embryonal carcinoma cell lines were generated which express RARalpha/VDR mRNA (F9RARalpha/VDR cells) and compared with F9 wild-type (F9-Wt) cells, which do not express VDR mRNA. Treatment with all-trans retinoic acid (tRA) inhibits cell growth and induces the differentiation morphology in both F9-Wt and F9-RARalpha/VDR cells; whereas, treatment with D3 is similarly effective only for F9-RARalpha/VDR cells. It is concluded RARalpha/VDR is an useful 'tool' to pinpoint, or to augment transcription from RAREs in gene pathways controlled by RAR without inhibiting the retinoid responsiveness of endogenous RARs.


Asunto(s)
Receptores de Calcitriol/fisiología , Receptores de Ácido Retinoico/fisiología , Proteínas Recombinantes de Fusión/fisiología , Animales , Células COS , Diferenciación Celular/fisiología , Colecalciferol/metabolismo , Dimerización , Estradiol/metabolismo , Cinética , Ratones , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/fisiología , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Receptor alfa de Ácido Retinoico , Receptores X Retinoide , Especificidad por Sustrato , Factores de Transcripción/metabolismo , Activación Transcripcional/fisiología , Transfección
2.
J Muscle Res Cell Motil ; 17(5): 555-73, 1996 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-8906623

RESUMEN

A mixture of two peptides of approximately M(r) 13000 has been isolated from a papain digest of LC2 deficient myosin. The peptides assemble into highly ordered aggregates which in one view are made up of strands of pairs of dots with an average side to side spacing of 13.0 nm and an average axial repeat of 9.0 nm. In another view there are strands of single dots with a side-to-side spacing of 7.8 nm and an axial repeat of 9.1 nm. From N-terminal peptide sequencing, the two peptides have been shown to come from regions of the myosin rod displaced by 195 residues. We have shown that either peptide alone can assemble to form the same aggregates. The 195 residue displacement of the M(r) 13000 peptides corresponds closely to the 196 residue repeat of charges along the myosin rod. This finding permits us to designate 195 residue segments of the myosin rod and to relate assembly characteristics directly to the similar 195 residue segments and 196 residue charge repeat. The most C-terminal 195 residue segment carries information for assembly into helical strands. The contiguous 195 residue segment, in major part, carries information for the unipolar assembly, characteristic of the assembly in each half of the myosin filament. The next contiguous 195 residue segment, in major part, carries information for bipolar assembly which is characteristic of the bare zone region of the filament; and for the transition from the bipolar bare zone to unipolar assembly. The effect of the eight C-terminal residues of the myosin rod on the assembly of the contiguous 195 residues has also been studied. The entire fragment of 195 + eight C-terminal residues assembled to form helical strands with an axial repeat of 30 nm. Successive deletion of charged residues changed the axial repeat of the helical strands suggesting that the charged residues at the C-terminus are involved in determining the pitch in the helical assembly of the contiguous 195 residues.


Asunto(s)
Subfragmentos de Miosina/química , Secuencia de Aminoácidos , Animales , Pollos , Electroforesis en Gel de Poliacrilamida , Datos de Secuencia Molecular , Peso Molecular , Papaína/metabolismo
3.
Leukemia ; 8(11): 1797-806, 1994 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-7967725

RESUMEN

The retinoid receptors belong to a large superfamily of ligand-inducible transcription factors that include the steroid, vitamin D and thyroid hormone receptors, the peroxisome proliferator-activated receptor, the insect edysteroid receptor, and a number of orphan receptors whose ligands are unknown. All nuclear receptors have several well-characterized structural domains, including a conserved DNA-binding domain, and a ligand binding domain at the carboxyl terminus of the receptor. The RAR and RXR classes of nuclear retinoic acid receptors are each composed of alpha, beta and gamma subtypes with more than one isoform for each receptor subtype. Data from many investigators suggest there are RAR- and RXR-dependent gene pathways, and that the individual receptor subtypes may control distinct gene expression patterns. In addition, RXR has been found to heterodimerize with other nuclear receptors to form active transcriptional complexes, which influence the activity of a variety of gene pathways important in growth and differentiation. As a result, retinoids have been useful clinical agents in Dermatology and Oncology. However, upon prolonged exposure to retinoic acid, resistance to retinoids has often been encountered both in the clinical setting and in long-term cell culture (HL60R and RAC65 cells). In the latter case, retinoid resistance has been associated with a mutation in the RAR gene which transcribes a RAR receptor truncated at the C-terminal end. These mutated RAR receptors exhibit a reduced affinity for retinoic acid while retaining the ability to bind to a retinoic acid response element on DNA. As a result, these mutant receptors exhibit dominant-negative activity by binding to the DNA without activating transcription and by competing with other receptors for sites on the response element. In fact, dominant-negative activity may be very important in the development of many neoplastic diseases, including acute promyelocytic leukemia (APL), where a t(15;17) chromosomal translocation fuses the PML gene to the RAR gene, to produce a PML-RAR fusion protein in large excess in the cell. However, retinoid resistance in the patient is most probably the result of pharmacokinetic problems, whereby, with continuous retinoid treatment, the plasma levels of retinoic acid gradually decrease to below that required to maintain differentiation of leukemic cells in vivo. A major challenge for drug discovery is to design a drug which circumvents these pharmacokinetic problems either by designing novel drug delivery systems or by employing retinoids which do not bind to CRABP, such as 9-c-RA.(ABSTRACT TRUNCATED AT 400 WORDS)


Asunto(s)
Receptores Citoplasmáticos y Nucleares , Receptores de Ácido Retinoico , Retinoides/uso terapéutico , Factores de Transcripción , Animales , Proteínas de Unión al ADN , Regulación de la Expresión Génica , Humanos , Proteínas Nucleares , Receptores X Retinoide , Transducción de Señal
4.
Leukemia ; 8 Suppl 3: S1-10, 1994.
Artículo en Inglés | MEDLINE | ID: mdl-7808017

RESUMEN

The retinoid receptors belong to a large superfamily of ligand-inducible transcription factors that include the steroid, vitamin D and thyroid hormone receptors, the peroxisome proliferator-activated receptor, the insect edysteroid receptor, and a number of orphan receptors whose ligands are unknown. All nuclear receptors have several well-characterized structural domains, including a conserved DNA-binding domain, and a ligand binding domain at the carboxyl terminus of the receptor. The RAR and RXR classes of nuclear retinoic acid receptors are each composed of alpha, beta and gamma subtypes with more than one isoform for each receptor subtype. Data from many investigators suggest there are RAR- and RXR-dependent gene pathways, and that the individual receptor subtypes may control distinct gene expression patterns. In addition, RXR has been found to heterodimerize with other nuclear receptors to form active transcriptional complexes, which influence the activity of a variety of gene pathways important in growth and differentiation. As a result, retinoids have been useful clinical agents in Dermatology and Oncology. However, upon prolonged exposure to retinoic acid, resistance to retinoids has often been encountered both in the clinical setting and in long-term cell culture (HL60R and RAC65 cells). In the latter case, retinoid resistance has been associated with a mutation in the RAR gene which transcribes a RAR receptor truncated at the C-terminal end. These mutated RAR receptors exhibit a reduced affinity for retinoic acid while retaining the ability to bind to a retinoic acid response element on DNA. As a result, these mutant receptors exhibit dominant-negative activity by binding to the DNA without activating transcription and by competing with other receptors for sites on the response element. In fact, dominant-negative activity may be very important in the development of many neoplastic diseases, including acute promyelocytic leukemia (APL), where a t(15;17) chromosomal translocation fuses the PML gene to the RAR gene, to produce a PML-RAR fusion protein in large excess in the cell. However, retinoid resistance in the patient is most probably the result of pharmacokinetic problems, whereby, with continuous retinoid treatment, the plasma levels of retinoic acid gradually decrease to below that required to maintain differentiation of leukemic cells in vivo. A major challenge for drug discovery is to design a drug which circumvents these pharmacokinetic problems either by designing novel drug delivery systems or by employing retinoids which do not bind to CRABP, such as 9-c-RA.(ABSTRACT TRUNCATED AT 400 WORDS)


Asunto(s)
Receptores de Ácido Retinoico/fisiología , Animales , Antineoplásicos/uso terapéutico , ADN de Neoplasias/efectos de los fármacos , Resistencia a Medicamentos , Humanos , Receptores Citoplasmáticos y Nucleares/efectos de los fármacos , Retinoides/uso terapéutico , Transcripción Genética/efectos de los fármacos
5.
Biochem J ; 280 ( Pt 1): 39-44, 1991 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-1835841

RESUMEN

In the absence of troponin and tropomyosin, skeletal actomyosin MgATPase activity can be altered by 2-3-fold by divalent cations. The 'sign' of this effect (i.e. inhibition or activation) varies with ionic strength. To investigate the mechanism, P(i) liberation was analysed at both low and high ionic strength with three concentrations of MgATP and over a wide range of Mg2+ concentrations. This procedure separated the effects of two dependent variables, Mg2+ and ATP4-/3- (ATPfree), to provide the following observations. (1) ATPfree, not Mg2+ (nor Ca2+), was the modifier. (2) ATPfree was an activator at low ionic strength and an inhibitor at high ionic strength, with half-maximal activation/inhibition occurring between 0.75 and 0.8 mM-ATPfree. (3) The rate constants controlling Vmax. with respect to actin were increased up to 3-fold by ATPfree at low ionic strength, and decreased up to 3-fold by ATPfree at high ionic strength. (4) The effect of ATPfree required near-native levels of the LC2 light chain bound to myosin (i.e. 2 mol of LC2/mol of myosin). (5) Sensitivity of P(i) liberation to a 50% decrease in the LC2 content of myosin required high ATPfree concentrations. It is concluded that LC2 and ATPfree are interdependent, non-additive, modifiers of MgATPase. These results are consistent with thin filament regulation of skeletal muscle contraction, and begin to explain why both positive and negative effects on MgATPase have been attributed to LC2.


Asunto(s)
Actomiosina/metabolismo , Adenosina Trifosfato/farmacología , ATPasa de Ca(2+) y Mg(2+)/metabolismo , Músculos/enzimología , Miosinas/metabolismo , Animales , Calcio/farmacología , Ácido Egtácico/farmacología , Cinética , Magnesio/farmacología , Miosinas/farmacología , Concentración Osmolar
6.
Biochim Biophys Acta ; 990(2): 216-23, 1989 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-2521799

RESUMEN

The assembly of LC2-deficient myosin was studied under conditions where control and LC2-reassociated myosin assemble around the native length of about 1.5 microns. The aim of this work was to determine how loss of LC2 affects the assembly characteristics. The findings of this study can be summarized as follows: (a) LC2-deficient myosin assembles into two populations of filaments, one around 0.5 micron in length and the other around 1 micron in length. This suggests that loss of the LC2 perturbs the length-determining mechanism. (b) The population of filaments around 0.5 micron has a diameter around 14 nm and that around 1 micron a diameter around 22 nm. Neither diameter corresponds to the 18 nm obtained with the control and LC2-reassociated myosins, suggesting that the presence of LC2 may have a role in regulating the side-to-side assembly of the myosin rods. (c) Filaments assembled from LC2-deficient myosin tend to aggregate side-by-side, but not those assembled from control and LC2-reassociated myosin. (d) The presence of MgATP has no effect on the length distribution of LC2-deficient myosin filaments in contrast to the sharpening of the distribution observed with control and reassociated myosin.


Asunto(s)
Músculos/ultraestructura , Miosinas/análisis , Adenosina Trifosfato/metabolismo , Animales , Microscopía Electrónica , Músculos/enzimología , Miosinas/metabolismo , Nefelometría y Turbidimetría , Polímeros , Conejos , Relación Estructura-Actividad
7.
J Cell Biol ; 99(6): 2297-308, 1984 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-6094594

RESUMEN

Ca2+ -activated neutral protease (CAF) was capable of degrading myosin over a 200-fold range of protease concentrations. CAF selected the heavy chain of myosin, although either prolonged exposure to or high concentrations of the protease degraded the L1, but not the L2 or L3, light chains of myosin. The following results indicated that during the first hour of digestion, under conditions where native myosin was the substrate, CAF selected for the "head" region of the myosin heavy chain: (a) large heavy chain fragments of identical molecular weight were produced from filamentous and from soluble myosin; (b) light meromyosin was not a substrate; (c) agents known to bind to the head of myosin (actin, MgATP, and L2) had both a qualitative and quantitative effect on degradation; and (d) similar cleavage sites could be demonstrated for myosin and for heavy meromyosin (HMM) despite the fact that HMM was a much poorer substrate than myosin. This observation is interpreted as an indication that the conformation of myosin heavy chain is altered in the preparation of HMM. The principal cleavage sites on the heavy chain of myosin were 20,000, 35,000 and 50,000 D from the N-terminus, producing large fragments with molecular weights of 180,000, 165,000, and 150,000 which comprised a "nicked" species of myosin. This nicked species retained both normal solubility properties and normal hydrolytic activities. For this reason, it is concluded that "nicked myosin" is an important pathophysiological species.


Asunto(s)
Endopeptidasas/metabolismo , Músculos/metabolismo , Miosinas/análisis , Fragmentos de Péptidos/análisis , Animales , Calpaína , Pollos , Electroforesis en Gel de Poliacrilamida , Cinética , Peso Molecular , Subfragmentos de Miosina , Conejos , Especificidad por Sustrato
9.
J Biol Chem ; 255(18): 8836-41, 1980 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-6447700

RESUMEN

Incubation of rabbit skeletal myosin with an extract of light chain kinase plus ATP phosphorylated the L2 light chain and modified the steady state kinetics of the actomyosin ATPase. With regulated actin, the ATPase activity of phosphorylated myosin (P-myosin) was 35 to 181% greater than that of unphosphorylated myosin when assayed with 0.05 to 5 micro M Ca2+. Phosphorylation had no effect on the Ca2+ concentration required for half-maximal activity, but it did increase the ATPase activity at low Ca2+. With pure actin, the percentage of increase in the actomyosin ATPase activity correlated with the percentage of phosphorylation of myosin. Steady state kinetic analyses of the actomyosin system indicated that 50 to 82% phosphorylation of myosin decreased significantly the Kapp of actin for myosin with no significant effect on the Vmax. Phosphorylaton of heavy meromyosin similarly modified the steady state kinetics of the acto-heavy meromyosin system. Both the K+/EDTA- and Mg-ATPase activities of P-myosin and phosphorylated heavy meromyosin were within normal limits indicating that phosphorylaiion had not altered significantly the hydrolytic site. Phosphatase treatment of P-myosin decreased both the level of phosphorylation of L2 and the actomyosin ATPase activity to control levels for unphosphorylated myosin. It is concluded levels for unphosphorylated myosin. It is concluded from these results that the ability of P-myosin to modify the steady state kinetics of the actomyosin ATPase was: 1) specific for phosphorylation; 2) independent of the thin filament regulatory proteins.


Asunto(s)
Actomiosina/metabolismo , Adenosina Trifosfatasas/metabolismo , Músculos/enzimología , Miosinas/metabolismo , Actinas/metabolismo , Animales , Cinética , Sustancias Macromoleculares , Subfragmentos de Miosina/metabolismo , Fosforilación , Conejos
11.
J Gen Physiol ; 64(5): 551-67, 1974 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-4443791

RESUMEN

Glycerol-extracted rabbit psoas muscle fibers were impaled with KCl-filled glass microelectrodes. For fibers at rest-length, the potentials were significantly more negative in solutions producing relaxation than in solutions producing either rigor or contraction; further the potentials in the latter two cases were not significantly different. For stretched fibers, with no overlap between thick and thin filaments, the potentials did not differ in the rigor, the relaxation, or the contraction solutions. The potentials measured from fibers in rigor did not vary significantly with the sarcomere length. For relaxed fibers, however, the potential magnitude decreased with increasing sarcomere length. The difference between the potentials measured for rigor and relaxed fibers exhibited a nonlinear relationship with sarcomere length. The potentials from calcium-insensitive fibers were less negative in both the rigor and the relaxation solutions than those from normal fibers. When calcium-insensitive fibers had been incubated in Hasselbach and Schneider's solution plus MgCl(2) or Guba-Straub's solution plus MgATP the potentials recorded upon impalement were similar in the rigor and the relaxation solution to those obtained from normal fibers in the relaxed state. It is concluded that the increase in the negative potential as the glycerinated fiber goes from rigor to relaxation may be due to an alteration in the conformation of the contractile proteins in the relaxed state.


Asunto(s)
Contracción Muscular , Proteínas Musculares , Músculos/fisiología , Animales , Calcio/farmacología , Electrofisiología , Glicerol/farmacología , Técnicas In Vitro , Magnesio/farmacología , Microelectrodos , Conformación Proteica , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA