Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Medicina (Kaunas) ; 59(10)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37893428

RESUMEN

Background and Objectives: After major upper-limb amputation, people face challenges due to losing tactile information and gripping function in their hands. While vision can confirm the success of an action, relying on it diverts attention from other sensations and tasks. This case report presents a 30-year-old man with traumatic, complete vision loss and transradial left forearm amputation. It emphasizes the importance of restoring tactile abilities when visual compensation is impossible. Materials and Methods: A prototype tactile feedback add-on system was developed, consisting of a sensor glove and upper arm cuff with related vibration actuators. Results: We found a 66% improvement in the Box and Blocks test and an overall functional score increase from 30% to 43% in the Southampton Hand Assessment Procedure with feedback. Qualitative improvements in bimanual activities, ergonomics, and reduced reliance on the unaffected hand were observed. Incorporating the tactile feedback system improved the precision of grasping and the utility of the myoelectric hand prosthesis, freeing the unaffected hand for other tasks. Conclusions: This case demonstrated improvements in prosthetic hand utility achieved by restoring peripheral sensitivity while excluding the possibility of visual compensation. Restoring tactile information from the hand and fingers could benefit individuals with impaired vision and somatosensation, improving acceptance, embodiment, social integration, and pain management.


Asunto(s)
Miembros Artificiales , Retroalimentación Sensorial , Masculino , Humanos , Adulto , Retroalimentación , Amputación Quirúrgica , Tacto
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 7077-7082, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34892732

RESUMEN

Human machine interfaces follow machine learning approaches to interpret muscles states, mainly from electrical signals. These signals are easy to collect with tiny devices, on tight power budgets, interfaced closely to the human skin. However, natural movement behavior is not only determined by muscle activation, but it depends on an orchestration of several subsystems, including the instantaneous length of muscle fibers, typically inspected by means of ultrasound (US) imaging systems. This work shows for the first time an ultra-lightweight (7 g) electromyography (sEMG) system transparent to ultrasound, which enables the simultaneous acquisition of sEMG and US signals from the same location. The system is based on ultrathin and skin-conformable temporary tattoo electrodes (TTE) made of printed conducting polymer, connected to a tiny, parallel-ultra-low power acquisition platform (BioWolf). US phantom images recorded with the TTE had mean axial and lateral resolutions of 0.90±0.02 mm and 1.058±0.005 mm, respectively. The root mean squares for sEMG signals recorded with the US during biceps contractions were at 57±10 µV and mean frequencies were at 92±1 Hz. We show that neither ultrasound images nor electromyographic signals are significantly altered during parallel and synchronized operation.Clinical relevance- Modern prosthetic engineering concepts use interfaces connected to muscles or nerves and employ machine learning models to infer on natural movement behavior of amputated limbs. However, relying only on a single data source (e.g., electromyography) reduces the quality of a fine-grained motor control. To address this limitation, we propose a new and unobtrusive device capable of capturing the electrical and mechanical behavior of muscles in a parallel and synchronized fashion. This device can support the development of new prosthetic control and design concepts, further supporting clinical movement science in the configuration of better simulation models.


Asunto(s)
Tatuaje , Brazo , Electromiografía , Humanos , Movimiento , Músculo Esquelético/diagnóstico por imagen
3.
Sensors (Basel) ; 19(19)2019 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-31590410

RESUMEN

Movement science investigating muscle and tendon functions during locomotion utilizes commercial ultrasound imagers built for medical applications. These limit biomechanics research due to their form factor, range of view, and spatio-temporal resolution. This review systematically investigates the technical aspects of applying ultrasound as a research tool to investigate human and animal locomotion. It provides an overview on the ultrasound systems used and of their operating parameters. We present measured fascicle velocities and discuss the results with respect to operating frame rates during recording. Furthermore, we derive why muscle and tendon functions should be recorded with a frame rate of at least 150 Hz and a range of view of 250 mm. Moreover, we analyze why and how the development of better ultrasound observation devices at the hierarchical level of muscles and tendons can support biomechanics research. Additionally, we present recent technological advances and their possible application. We provide a list of recommendations for the development of a more advanced ultrasound sensor system class targeting biomechanical applications. Looking to the future, mobile, ultrafast ultrasound hardware technologies create immense opportunities to expand the existing knowledge of human and animal movement.

4.
Eur J Appl Physiol ; 118(7): 1447-1461, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29730804

RESUMEN

This study investigated the effect of isometrically induced fatigue on Hill-type muscle model parameters and related task-dependent effects. Parameter identification methods were used to extract fatigue-related parameter trends from isometric and ballistic dynamic maximum voluntary knee extensions. Nine subjects, who completed ten fatiguing sets, each consisting of nine 3 s isometric maximum voluntary contractions with 3 s rest plus two ballistic contractions with different loads, were analyzed. Only at the isometric task, the identified optimized model parameter values of muscle activation rate and maximum force generating capacity of the contractile element decreased from [Formula: see text] to [Formula: see text] Hz and from [Formula: see text] to [Formula: see text] N, respectively. For all tasks, the maximum efficiency of the contractile element, mathematically related to the curvature of the force-velocity relation, increased from [Formula: see text] to [Formula: see text]. The model parameter maximum contraction velocity decreased from [Formula: see text] to [Formula: see text] m/s and the stiffness of the serial elastic element from [Formula: see text] to [Formula: see text] N/mm. Thus, models of fatigue should consider fatigue dependencies in active as well as in passive elements, and muscle activation dynamics should account for the task dependency of fatigue.


Asunto(s)
Contracción Isométrica , Rodilla/fisiología , Fatiga Muscular , Músculo Esquelético/fisiología , Adulto , Fenómenos Biomecánicos , Elasticidad , Humanos , Masculino , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA