Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Transl Lung Cancer Res ; 12(11): 2342-2346, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38090529

RESUMEN

Background: Anaplastic lymphoma kinase (ALK) rearrangement confers sensitivity to second- and third-generation ALK inhibitors, which have become the standard of care for ALK-positive non-small cell lung carcinoma (NSCLC). However, primary resistance to these inhibitors remains a rare and poorly understood phenomenon, especially in cases involving kinesin light chain 1 (KLC1)/ALK-rearranged metastatic NSCLC. Case Description: In this report, we present a unique and challenging case of primary resistance to second- and third-generation ALK tyrosine kinase inhibitors (TKIs) attributed to KLC1/ALK gene fusion partners in a patient with ALK-positive pleural metastatic NSCLC. The patient's disease progression was rapid and unresponsive to multiple lines of ALK-targeted therapies, including alectinib, brigatinib, and lorlatinib, underscoring the need for a deeper understanding of primary resistance mechanisms in such cases. Conclusions: The occurrence of primary resistance to ALK inhibitors in metastatic NSCLC with ALK rearrangement is an infrequent occurrence, and its underlying mechanisms remain elusive. This case emphasizes the importance of further research to elucidate the specific mechanisms of primary resistance to ALK TKIs in non-canonical ALK fusion partners like KLC1. Developing targeted therapies for such rare cases is a clinical challenge that warrants continued investigation and innovation in the field of precision oncology.

2.
Biomedicines ; 11(7)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37509464

RESUMEN

Radiation therapy and platinum-based chemotherapy are common treatments for lung cancer patients. Several factors are considered for the low overall survival rate of lung cancer, such as the patient's physical state and the complex heterogeneity of the tumor, which leads to resistance to the treatment. Consequently, precision medicines are needed for the patients to improve their survival and their quality of life. Until now, no patient-derived tumoroid model has been reported to predict the efficiency of radiation therapy in non-small-cell lung cancer. Using our patient-derived tumoroid model, we report that this model could be used to evaluate the efficiency of radiation therapy and cisplatin-based chemotherapy in non-small-cell lung cancer. In addition, these results can be correlated to clinical outcomes of patients, indicating that this patient-derived tumoroid model can predict the response to radiotherapy and chemotherapy in non-small-cell lung cancer.

3.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37108738

RESUMEN

The therapeutic algorithm of lung cancer has recently been revolutionized by the emergence of immune checkpoint inhibitors. However, an objective and durable response rate remains low with those recent therapies and some patients even experience severe adverse events. Prognostic and predictive biomarkers are therefore needed in order to select patients who will respond. Nowadays, the only validated biomarker is the PD-L1 expression, but its predictive value remains imperfect, and it does not offer any certainty of a sustained response to treatment. With recent progresses in molecular biology, genome sequencing techniques, and the understanding of the immune microenvironment of the tumor and its host, new molecular features have been highlighted. There are evidence in favor of the positive predictive value of the tumor mutational burden, as an example. From the expression of molecular interactions within tumor cells to biomarkers circulating in peripheral blood, many markers have been identified as associated with the response to immunotherapy. In this review, we would like to summarize the latest knowledge about predictive and prognostic biomarkers of immune checkpoint inhibitors efficacy in order to go further in the field of precision immuno-oncology.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias Pulmonares , Humanos , Pronóstico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Biomarcadores de Tumor/metabolismo , Inmunoterapia/métodos , Antígeno B7-H1/metabolismo , Microambiente Tumoral
4.
Ann Transl Med ; 11(5): 223, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37007549

RESUMEN

Background: Osimertinib is approved in first line metastatic epidermal growth factor receptor (EGFR) mutated non-small cell lung cancer (NSCLC). Acquired EGFR L718V mutation is a rare mechanism of resistance towards osimertinib in L858R+ NSCLC with potential sensibility to afatinib. This case reported an acquired EGFR L718V/TP53 V727M resistance co-mutation to osimertinib with discordant molecular pattern between plasmatic and cerebral fluid in a leptomeningeal and bone metastatic EGFR L858R mutant NSCLC. Case Description: A 52-year-old female, diagnosed with a bone metastatic EGFR L858R-mutated NSCLC, was treated with osimertinib as second line treatment for a leptomeningeal progression. She developed an acquired EGFR L718V/TP53 V272M resistance co-mutation after seventeen months of treatment. Discordant molecular status was observed between plasmatic (L718V+/TP53+/L858R+) and cerebrospinal fluid (CSF) (L718V-/TP53+/L858R+). Afatinib as third line did not prevent neurological progression. Conclusions: Acquired EGFR L718V mutation mediate a rare mechanism of resistance to osimertinib. Some cases reported sensibility to afatinib in patients with EGFR L718V mutation. In this described case, afatinib had no efficacy against neurological progression. This could be explained by the absence of EGFR L718V mutation in CSF tumor cells and concomitant TP53 V272M mutation as negative survival prognostic. Identify resistance mechanisms against osimertinib and develop specific therapeutic approaches remain a challenge in clinical routine.

5.
Cancers (Basel) ; 15(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36900302

RESUMEN

CDKN2A is a tumor suppressor gene encoding the p16 protein, a key regulator of the cell cycle. CDKN2A homozygous deletion is a central prognostic factor for numerous tumors and can be detected by several techniques. This study aims to evaluate the extent to which immunohistochemical levels of p16 expression may provide information about CDKN2A deletion. A retrospective study was conducted in 173 gliomas of all types, using p16 IHC and CDKN2A fluorescent in situ hybridization. Survival analyses were performed to assess the prognostic impact of p16 expression and CDKN2A deletion on patient outcomes. Three patterns of p16 expression were observed: absence of expression, focal expression, and overexpression. Absence of p16 expression was correlated with worse outcomes. p16 overexpression was associated with better prognoses in MAPK-induced tumors, but with worse survival in IDH-wt glioblastomas. CDKN2A homozygous deletion predicted worse outcomes in the overall patient population, particularly in IDH-mutant 1p/19q oligodendrogliomas (grade 3). Finally, we observed a significant correlation between p16 immunohistochemical loss of expression and CDKN2A homozygosity. IHC has strong sensitivity and high negative predictive value, suggesting that p16 IHC might be a pertinent test to detect cases most likely harboring CDKN2A homozygous deletion.

6.
Virchows Arch ; 482(2): 431-435, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36307659

RESUMEN

Primary intracranial sarcoma DICER1-mutant is a rare and newly recognized tumor type introduced in the 2021 WHO Classification of Central Nervous System Tumors. It is defined as a spindle cell sarcoma dysplaying eosinophilic intracytoplasmic globules, myogenic differentiation, and DICER1 gene mutation, either somatic or germline. Most reported cases were hemispheric except one, recently described in the pineal region. Here, we report the case of a 12 year-old boy with a pineally located tumor. Despite midline location, poorly differenciated morphology and germ cell marker expression, the association of DICER1 and NF1 hotspot mutations and a specific DNA methylation signature finally lead to the diagnosis of primary intracranial sarcoma DICER1-mutant instead of germ cell tumor. Furthermore, our molecular exploratory results involved a pathway, which was not previously evidenced in those DICER1 mutated cerebral sarcoma that is the canonical Wnt signaling driving likely a part of oncogenesis in this newly described pineal entity.


Asunto(s)
Neoplasias Encefálicas , Glándula Pineal , Pinealoma , Sarcoma , Masculino , Humanos , Niño , Pinealoma/genética , Mutación de Línea Germinal , Mutación , Sarcoma/genética , Neoplasias Encefálicas/genética , Ribonucleasa III/genética , ARN Helicasas DEAD-box/genética
7.
Adv Healthc Mater ; 11(19): e2200195, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36057996

RESUMEN

Osteosarcoma (OS) is the most common primary bone cancer, where the overall 5-year surviving rate is below 20% in resistant forms. Accelerating cures for those poor outcome patients remains a challenge. Nevertheless, several studies of agents targeting abnormal cancerous pathways have yielded disappointing results when translated into clinic because of the lack of accurate OS preclinical modeling. So, any effort to design preclinical drug testing may consider all inter-, intra-, and extra-tumoral heterogeneities throughout models mimicking extracellular and immune microenvironment. Therefore, the bioengineering of patient-derived models reproducing the OS heterogeneity, the interaction with tumor-associated macrophages (TAMs), and the modulation of oxygen concentrations additionally to recreation of bone scaffold is proposed here. Eight 2D preclinical models mimicking several OS clinical situations and their TAMs in hypoxic conditions are developed first and, subsequently, the paired 3D models faithfully preserving histological and biological characteristics are generated. It is possible to shape reproducibly M2-like macrophages cultured with all OS patient-derived cell lines in both dimensions. The final 3D models pooling all heterogeneity features are providing accurate proliferation and migration data to understand the mechanisms involved in OS and immune cells/biomatrix interactions and sustained such that engineered 3D preclinical systems will improve personalized medicine.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Neoplasias Óseas/patología , Huesos/metabolismo , Línea Celular Tumoral , Matriz Extracelular/metabolismo , Humanos , Osteosarcoma/metabolismo , Oxígeno , Microambiente Tumoral
8.
Cells ; 11(18)2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36139440

RESUMEN

(1) Background: The first line of treatment for recurrent/metastatic Head and Neck Squamous Cell Carcinoma (HNSCC) has recently evolved with the approval of immunotherapies that target the anti-PD-1 immune checkpoint. However, only about 20% of the patients display a long-lasting objective tumor response. The modulation of cancer cell immunogenicity via a treatment-induced immunogenic cell death is proposed to potentially be able to improve the rate of patients who respond to immune checkpoint blocking immunotherapies. (2) Methods: Using human HNSCC cell line models and a mouse oral cancer syngeneic model, we have analyzed the ability of the EXTREME regimen (combination therapy using the anti-EGFR cetuximab antibody and platinum-based chemotherapy) to modify the immunogenicity of HNSCC cells. (3) Results: We showed that the combination of cetuximab and cisplatin reduces cell growth through both cell cycle inhibition and the induction of apoptotic cell death independently of p53. In addition, different components of the EXTREME regimen were found to induce, to a variable extent, and in a cell-dependent manner, the emission of mediators of immunogenic cell death, including calreticulin, HMGB1, and type I Interferon-responsive chemokines. Interestingly, cetuximab alone or combined with the IC50 dose of cisplatin can induce an antitumor immune response in vivo, but not when combined with a high dose of cisplatin. (4) Conclusions: Our observations suggest that the EXTREME protocol or cetuximab alone are capable, under conditions of moderate apoptosis induction, of eliciting the mobilization of the immune system and an anti-tumor immune response in HNSCC.


Asunto(s)
Cetuximab , Neoplasias de Cabeza y Cuello , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis , Calreticulina , Cetuximab/uso terapéutico , Cisplatino/uso terapéutico , Proteína HMGB1 , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/inmunología , Humanos , Inmunidad , Interferón Tipo I , Ratones , Recurrencia Local de Neoplasia/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Proteína p53 Supresora de Tumor
9.
Cancers (Basel) ; 14(5)2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35267628

RESUMEN

KRAS is the most frequently mutated oncogene in non-small cell lung cancers (NSCLC), with a frequency of around 30%, and encoding a GTPAse that cycles between active form (GTP-bound) to inactive form (GDP-bound). The KRAS mutations favor the active form with inhibition of GTPAse activity. KRAS mutations are often with poor response of EGFR targeted therapies. KRAS mutations are good predictive factor for immunotherapy. The lack of success with direct targeting of KRAS proteins, downstream inhibition of KRAS effector pathways, and other strategies contributed to a focus on developing mutation-specific KRAS inhibitors. KRAS p.G12C mutation is one of the most frequent KRAS mutation in NSCLC, especially in current and former smokers (over 40%), which occurs among approximately 12-14% of NSCLC tumors. The mutated cysteine resides next to a pocket (P2) of the switch II region, and P2 is present only in the inactive GDP-bound KRAS. Small molecules such as sotorasib are now the first targeted drugs for KRAS G12C mutation, preventing conversion of the mutant protein to GTP-bound active state. Little is known about primary or acquired resistance. Acquired resistance does occur and may be due to genetic alterations in the nucleotide exchange function or adaptative mechanisms in either downstream pathways or in newly expressed KRAS G12C mutation.

10.
Cancers (Basel) ; 13(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34638411

RESUMEN

Non-small cell lung cancer (NSCLC) is the most common cancer in the world. Activating epidermal growth factor receptor (EGFR) gene mutations are a positive predictive factor for EGFR tyrosine kinase inhibitors (TKIs). For common EGFR mutations (Del19, L858R), the standard first-line treatment is actually third-generation TKI, osimertinib. In the case of first-line treatment by first (erlotinib, gefitinib)- or second-generation (afatinib) TKIs, osimertinib is approved in second-line treatment for patients with T790M EGFR mutation. Despite the excellent disease control results with EGFR TKIs, acquired resistance inevitably occurs and remains a biological challenge. This leads to the discovery of novel biomarkers and possible drug targets, which vary among the generation/line of EGFR TKIs. Besides EGFR second/third mutations, alternative mechanisms could be involved, such as gene amplification or gene fusion, which could be detected by different molecular techniques on different types of biological samples. Histological transformation is another mechanism of resistance with some biological predictive factors that needs tumor biopsy. The place of liquid biopsy also depends on the generation/line of EGFR TKIs and should be a good candidate for molecular monitoring. This article is based on the literature and proposes actual and future directions in clinical and translational research.

11.
Cancers (Basel) ; 12(10)2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33092063

RESUMEN

Hypoxic environment is a prognostic factor linked in pediatric cancers to a worse outcome, favoring tumor progression and resistance to treatments. The activation of mechanistic Target Of Rapamycin (mTor)/hypoxia inducible factor (HIF)-1 pathway can be targeted by rapamycin and irinotecan, respectively. Therefore, we designed a phase I trial associating both drugs in pediatric refractory/relapsing solid tumors. Patients were enrolled according to a 3 + 3 escalation design with ten levels, aiming to determine the MTD (maximum tolerated dose) of rapamycin plus irinotecan. Rapamycin was administered orally once daily in a 28-day cycle (1 to 2.5 mg/m2/day), associating biweekly intravenous irinotecan (125 to 240 mg/m2/dose). Toxicities, pharmacokinetics, efficacy analyses, and pharmacodynamics were evaluated. Forty-two patients, aged from 2 to 18 years, were included. No MTD was reached. Adverse events were mild to moderate. Only rapamycin doses of 1.5 mg/m2/day reached over time clinically active plasma concentrations. Tumor responses and prolonged stable disease were associated with a mean irinotecan area under the curve of more than 400 min.mg/L. Fourteen out of 31 (45.1%) patients had a non-progressive disease at 8 weeks. Most of them were sarcomas and brain tumors. For the phase II trial, we can then propose biweekly 125 mg/m2 irinotecan dose with a pharmacokinetic (PK) follow-up and a rapamycin dose of 1.5 mg/m2/day, reaching a blood concentration above 10 g/L.

12.
Lung Cancer ; 140: 19-26, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31841714

RESUMEN

OBJECTIVES: T790M mutations inEGFR-mutated non-small cell lung cancer (NSCLC) account for nearly 50% of acquired resistance mechanisms to EGFR-TKIs. Earlier studies suggested that tumor T790M could also be detected in TKI-naïve EGFR-mutated NSCLC. The aim of the study is to assess the prevalence and clinical significance of quantification of tumor pre-treatment T790M subclones. MATERIALS AND METHODS: We analyzed 366 EGFR-mutated NSCLC patients of the real-life IFCT Biomarkers France study with available pre-treatment formalin-fixed paraffin-embedded (FFPE) tumor DNA before treatment by first/second-generation EGFR-TKI. We used ultra-sensitive Droplet Digital Polymerase Chain Reaction (ddPCR) QX200 (BIO-RAD®, Hercules, CA, USA). All samples were tested in duplicate. RESULTS: ddPCR identified T790M in 19/240 specimens (8%). T790M-positive and T790M-negative populations were not different for clinical baseline characteristics. T790M Variant Allele Frequency (VAF) was > 0.01% <0.1%, > 0.1% <1%, > 1% <10%, and >10% in five (26.3%), six (31.6%), six (31.6%), and two (10.5%) patients, respectively. T790M VAF was >0.1% in 11/13 (84%) patients with rapid (<3 months) or usual progression (3-20 months) compared to 0/3 with low progression (>20 months) (p = 0.02). In a Cox model, T790M mutation positivity was correlated with overall survival (OS) and progression-free survival (PFS) for 10% > VAF >1% (hazard ratio [HR] = 2.83, 95% confidence interval [CI] 1.13-7.07, p = 0.03; HR=3.62, 95%CI 1.43-4.92, p = 0.007, respectively) and for VAF >10% (HR = 19.14, 95%CI 4.35-84.26, p < 0.001; HR = 17.89, 95%CI 2.21-144.86, p = 0.007, respectively). CONCLUSION: Ultra-sensitive detection of tumor T790M mutation concerned 8% of EGFR-mutated TKI-naïve NSCLC patients and has a negative prognostic value only for T790M VAF over 1%.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Mutación , Inhibidores de Proteínas Quinasas/uso terapéutico , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Carcinoma de Células Grandes/tratamiento farmacológico , Carcinoma de Células Grandes/genética , Carcinoma de Células Grandes/patología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Resistencia a Antineoplásicos , Receptores ErbB/genética , Femenino , Estudios de Seguimiento , Francia , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos , Tasa de Supervivencia
13.
Cancers (Basel) ; 11(10)2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31640284

RESUMEN

BACKGROUND: management of head and neck squamous cell carcinomas (HNSCC) include anti-Epidermal Growth Factor Receptor (EGFR) antibodies and radiotherapy, but resistance emerges in most patients. RAS mutations lead to primary resistance to EGFR blockade in metastatic colorectal cancer but are infrequent in HNSCC, suggesting that other mechanisms are implicated. Since hypoxia and Hypoxia Inducible Factor-1 (HIF-1) have been associated with treatment failure and tumor progression, we hypothesized that EGFR/mammalian Target Of Rapamycin (mTOR)/HIF-1 axis inhibition could radiosensitize HNSCC. METHODS: We treated the radiosensitive Cal27 used as control, and radioresistant SQ20B and UD-SCC1 cells, in vivo and in vitro, with rapamycin and cetuximab before irradiation and evaluated tumor progression and clonogenic survival. RESULTS: Rapamycin and cetuximab inhibited the mTOR/HIF-1α axis, and sensitized the SQ20B cell line to EGFR-inhibition. However, concomitant delivery of radiation to SQ20B xenografts increased tumor relapse frequency, despite effective HIF-1 inhibition. Treatment failure was associated with the induction of HIF-2α expression by cetuximab and radiotherapy. Strikingly, SQ20B and UD-SCC1 cells clonogenic survival dropped <30% after HIF-2α silencing, suggesting a HIF-2-dependent mechanism of oncogenic addiction. CONCLUSIONS: altogether, our data suggest that resistance to EGFR inhibition combined with radiotherapy in HNSCC may depend on tumor HIF-2 expression and underline the urgent need to develop novel HIF-2 targeted treatments.

14.
Cancers (Basel) ; 11(10)2019 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-31627299

RESUMEN

Advanced colorectal cancer has a poor prognosis because of metastasis formation and resistance to combined therapies. Downstream of PI3K/Akt and Ras/MAPK pathways, the mTOR kinase plays a decisive role in treatment failure. We previously established that irinotecan has antiangiogenic properties and it is known that new mammalian target of rapamycin (mTOR) catalytic AZD inhibitors, unlike rapamycin, target both mTORC1 and mTORC2. Thus, we hypothesized that the complete inhibition of the PI3K/AKT/mTOR/HIF-1α axis with mTOR catalytic inhibitors and low doses of irinotecan may have antitumor effects. We showed that the AZD8055 and AZD2014 inhibitors were much more potent than rapamycin to reduce cell viability of four colon cell lines. On the other hand, whereas AZD2014 alone inhibits migration by 40%, the drug combination led to 70% inhibition. Similarly, neither irinotecan nor AZD2014 significantly reduced cell invasion, whereas a combination of the two inhibits invasion by 70%. In vivo, irinotecan and AZD2014 combination drastically reduced ectopic patient-derived colon tumor growth and this combination was more potent than Folfox or Folfiri. Finally, the combination totally inhibited liver and lung metastases developed from orthotopic implantation of SW480 cells. Thus, the use of mTOR catalytic inhibitors, in association with other chemotherapeutic agents like irinotecan at low doses, is potentially a hope for colon cancer treatment.

15.
J Invest Dermatol ; 139(8): 1769-1778.e2, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30776432

RESUMEN

In melanoma, initiating oncogenic mutations in BRAF or NRAS are detected in premalignant lesions that accumulate additional mutations and genomic instability as the tumor evolves to the metastatic state. Here we investigate evolution of clonal composition and neoantigen landscape in an atypical melanoma displaying recurrent cutaneous lesions over a 6-year period without development of extracutaneous metastases. Whole exome sequencing of four cutaneous lesions taken during the 6-year period identified a collection of single nucleotide variants and small insertions and deletions shared among all tumors, along with progressive selection of subclones displaying fewer single nucleotide variants. Later tumors also displayed lower neoantigen burden compared to early tumors, suggesting that clonal evolution was driven, at least in part, by counter selection of subclones with high neoantigen burdens. Among the selected mutations are a missense mutation in MAP2K1 (F53Y) and an inversion on chromosome 7 generating a AKAP9-BRAF fusion. The mutant proteins cooperatively activate the MAPK signaling pathway confirming they are potential driver mutations of this tumor. We therefore describe the long-term genetic evolution of cutaneous metastatic melanoma characterized by an unexpected phenotypic stability and neoantigen-driven clonal selection.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Carcinogénesis/genética , Melanoma/genética , Recurrencia Local de Neoplasia/genética , Neoplasias Cutáneas/genética , Proteínas de Anclaje a la Quinasa A/genética , Adulto , Antígenos de Neoplasias/inmunología , Biopsia , Carcinogénesis/inmunología , Evolución Clonal , Proteínas del Citoesqueleto/genética , Análisis Mutacional de ADN , Células HEK293 , Humanos , MAP Quinasa Quinasa 1/genética , Masculino , Melanoma/inmunología , Melanoma/patología , Mutación , Mutación Missense , Recurrencia Local de Neoplasia/inmunología , Recurrencia Local de Neoplasia/patología , Proteínas de Fusión Oncogénica/genética , Proteínas Proto-Oncogénicas B-raf/genética , Piel/patología , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/patología , Secuenciación del Exoma
16.
Biol Cell ; 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29907957

RESUMEN

BACKGROUND INFORMATION: Tumor stroma remodeling is a key feature of malignant tumors and can promote cancer progression. Laminins are major constituents of basement membranes that physically separate the epithelium from the underlying stroma. RESULTS: By employing mouse models expressing high and low levels of the laminin α1 chain (LMα1), we highlighted its implication in a tumor-stroma crosstalk, thus leading to increased colon tumor incidence, angiogenesis and tumor growth. The underlying mechanism involves attraction of carcinoma-associated fibroblasts by LMα1, VEGFA expression triggered by the complex integrin α2ß1-CXCR4 and binding of VEGFA to LM-111, which in turn promotes angiogenesis, tumor cell survival and proliferation. A gene signature comprising LAMA1, ITGB1, ITGA2, CXCR4 and VEGFA has negative predictive value in colon cancer. CONCLUSIONS: Together, we have identified VEGFA, CXCR4 and α2ß1 integrin downstream of LMα1 in colon cancer as of bad prognostic value for patient survival. SIGNIFICANCE: This information opens novel opportunities for diagnosis and treatment of colon cancer.

17.
Cancer Med ; 7(7): 3278-3291, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29845746

RESUMEN

Lymph node metastasis is an important prognosis factor in non-small cell lung cancer (NSCLC) patients. The aim of this study was to investigate the role of epithelial to mesenchymal transition (EMT) in lymph node progression in the early stages of NSCLC. We studied a retrospective cohort of 160 consecutive surgically treated NSCLC patients with available frozen tumor samples for expression of EMT markers (CDH1, CTNNB1, CDH2, and VIMENTIN), inducers (TGFB1, c-MET, and CAIX), and transcription factors (EMT-TF: SNAI1, SNAI2, ZEB1, TWIST1, and TWIST2). Partial EMT was more frequent in N1-2 (N+) vs N0 patients (P < .01). TGFB1 (P = .02) as well as SNAI2 (P < .01) and TWIST1 (P = .04) were the most differentially expressed genes in N+ tumors. In this group, ZEB1 was correlated with all EMT inducers and other EMT-TFs were overexpressed depending on the inducers. CAIX was an independent prognostic factor for overall survival (IC 95% HR: 1.10-5.14, P = .03). Partial EMT is involved in lymph node progression of NSCLC patients and depends on the TGFß pathway. EMT-TFs are differentially expressed depending on EMT inducers. CAIX might be a relevant prognostic marker in early stage NSCLC.

18.
Oncotarget ; 8(42): 71597-71617, 2017 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-29069732

RESUMEN

Pediatric high grade glioma (pHGGs), including sus-tentorial and diffuse intrinsic pontine gliomas, are known to have a very dismal prognosis. For instance, even an increased knowledge on molecular biology driving this brain tumor entity, there is no treatment able to cure those patients. Therefore, we were focusing on a translational pathway able to increase the cell resistance to treatment and to reprogram metabolically tumor cells, which are, then, adapting easily to a hypoxic microenvironment. To establish, the crucial role of the hypoxic pathways in pHGGs, we, first, assessed their protein and transcriptomic deregulations in a pediatric cohort of pHGGs and in pHGG's cell lines, cultured in both normoxic and hypoxic conditions. Secondly, based on the concept of a bi-therapy targeting in pHGGs mTORC1 (rapamycin) and HIF-1α (irinotecan), we hypothesized that the balanced expressions between RAS/ERK, PI3K/AKT and HIF-1α/HIF-2α/MYC proteins or genes may provide a modulation of the cell response to this double targeting. Finally, we could evidence three protein, genomic and metabolomic profiles of response to rapamycin combined with irinotecan. The pattern of highly sensitive cells to mTOR/HIF-1α targeting was linked to a MYC/ERK/HIF-1α over-expression and the cell resistance to a major hyper-expression of HIF-2α.

19.
Oncotarget ; 8(24): 38351-38366, 2017 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-28418886

RESUMEN

CXCL12 has been shown to be involved in colon cancer metastasis, but its expression level and molecular mechanisms regulating its expression remain controversial. We thus evaluated CXCL12 expression in a large cohort of colon adenomas and carcinomas, investigated for an epigenetic mechanism controlling its expression and evaluated the impact of CXCL12 levels on cell migration and tumor growth. CXCL12 expression was measured in human colon adenomas and carcinomas with transcriptome array and RT-qPCR. The promoter methylation was analyzed with whole-genome DNA methylation chips and protein expression by immunohistochemistry. We confirm a reduced expression of CXCL12 in 75% of MSS carcinomas and show that the decrease is an early event as already present in adenomas. The methylome analysis shows that the CXCL12 promoter is methylated in only 30% of microsatellite-stable tumors. In vitro, treatments with HDAC inhibitors, butyrate and valproate restored CXCL12 expression in three colon cell lines, increased acetylation of histone H3 within the CXCL12 promoter and inhibited cell migration. In vivo, valproate diminished (65%) the number of intestinal tumors in APC mutant mice, slowed down xenograft tumor growth concomitant to restored CXCL12 expression. Finally we identified loss of PCAF expression in tumor samples and showed that forced expression of PCAF in colon cancer cell lines restored CXCL12 expression. Thus, reduced PCAF expression may participate to CXCL12 promoter hypoacetylation and its subsequent loss of expression. Our study is of potential clinical interest because agents that promote or maintain histone acetylation through HDAC inhibition and/or HAT stimulation, may help to lower colon adenoma/carcinoma incidence, especially in high-risk families, or could be included in therapeutic protocols to treat advanced colon cancer.


Asunto(s)
Quimiocina CXCL12/biosíntesis , Neoplasias del Colon/patología , Regulación Neoplásica de la Expresión Génica/genética , Histonas/genética , Acetilación , Adenocarcinoma/patología , Adenoma/patología , Adulto , Anciano , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Quimiocina CXCL12/genética , Neoplasias del Colon/genética , Metilación de ADN , Regulación hacia Abajo , Femenino , Xenoinjertos , Histonas/metabolismo , Humanos , Masculino , Ratones , Ratones Mutantes , Persona de Mediana Edad
20.
Oral Oncol ; 51(9): 848-56, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26121938

RESUMEN

OBJECTIVES: Human Papillomavirus (HPV)-related oropharyngeal squamous cell carcinoma (OSCC) patients have improved prognosis compared to other head and neck (HNSCC) cancers. Since poor prognosis is associated with tumour hypoxia, we studied whether the hypoxic response is different in HPV-related cells and tumours. MATERIAL AND METHODS: HPV-positive and -negative cells were incubated in hypoxia and analyzed by qRTPCR, western blotting and cell proliferation assays. Tumours formed by xenografting these cells in nude mice were studied by IHC. HNSCC patient samples were analyzed by unsupervised clustering of hypoxia-related gene expression, quantitative real-time PCR (qRTPCR) and immunohistochemical (IHC) detection of neo-blood vessels. RESULTS AND CONCLUSION: HPV-positive and -negative cells responded differently to hypoxia, in terms of gene expression (HIF-1α, PHD-3, GLUT-1 and VEGF-A) and cell survival. Tumour xenografts formed by HPV-positive cells had fewer hypoxic areas than those formed by HPV-negative cells. HPV related tumours were less hypoxic, expressed lower levels of hypoxia-responsive genes, and had a higher density of neo-blood vessels. HPV-related OSCC display lower tumour hypoxia, which could be linked to the distinct intrinsic abilities of HPV-positive tumour cells to adapt to hypoxia and to their better prognosis.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Neoplasias Orofaríngeas/metabolismo , Infecciones por Papillomavirus/metabolismo , Animales , Western Blotting , Hipoxia de la Célula/fisiología , Supervivencia Celular/fisiología , Femenino , Expresión Génica/fisiología , Humanos , Masculino , Ratones , Ratones Desnudos , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...