Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Nat Metab ; 6(2): 323-342, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38409325

RESUMEN

Cellular senescence affects many physiological and pathological processes and is characterized by durable cell cycle arrest, an inflammatory secretory phenotype and metabolic reprogramming. Here, by using dynamic transcriptome and metabolome profiling in human fibroblasts with different subtypes of senescence, we show that a homoeostatic switch that results in glycerol-3-phosphate (G3P) and phosphoethanolamine (pEtN) accumulation links lipid metabolism to the senescence gene expression programme. Mechanistically, p53-dependent glycerol kinase activation and post-translational inactivation of phosphate cytidylyltransferase 2, ethanolamine regulate this metabolic switch, which promotes triglyceride accumulation in lipid droplets and induces the senescence gene expression programme. Conversely, G3P phosphatase and ethanolamine-phosphate phospho-lyase-based scavenging of G3P and pEtN acts in a senomorphic way by reducing G3P and pEtN accumulation. Collectively, our study ties G3P and pEtN accumulation to controlling lipid droplet biogenesis and phospholipid flux in senescent cells, providing a potential therapeutic avenue for targeting senescence and related pathophysiology.


Asunto(s)
Glicerol , Glicerofosfatos , Metabolismo de los Lípidos , Humanos , Glicerol/metabolismo , Etanolaminas , Fosfatos
2.
Cell ; 186(24): 5328-5346.e26, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37883971

RESUMEN

Lysosomes serve dual antagonistic functions in cells by mediating anabolic growth signaling and the catabolic turnover of macromolecules. How these janus-faced activities are regulated in response to cellular nutrient status is poorly understood. We show here that lysosome morphology and function are reversibly controlled by a nutrient-regulated signaling lipid switch that triggers the conversion between peripheral motile mTOR complex 1 (mTORC1) signaling-active and static mTORC1-inactive degradative lysosomes clustered at the cell center. Starvation-triggered relocalization of phosphatidylinositol 4-phosphate (PI(4)P)-metabolizing enzymes reshapes the lysosomal surface proteome to facilitate lysosomal proteolysis and to repress mTORC1 signaling. Concomitantly, lysosomal phosphatidylinositol 3-phosphate (PI(3)P), which marks motile signaling-active lysosomes in the cell periphery, is erased. Interference with this PI(3)P/PI(4)P lipid switch module impairs the adaptive response of cells to altering nutrient supply. Our data unravel a key function for lysosomal phosphoinositide metabolism in rewiring organellar membrane dynamics in response to cellular nutrient status.


Asunto(s)
Lisosomas , Transducción de Señal , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Nutrientes , Fenómenos Fisiológicos Celulares
3.
PLoS Biol ; 21(4): e3002044, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37068088

RESUMEN

Unlike immature neurons and the ones from the peripheral nervous system (PNS), mature neurons from the central nervous system (CNS) cannot regenerate after injury. In the past 15 years, tremendous progress has been made to identify molecules and pathways necessary for neuroprotection and/or axon regeneration after CNS injury. In most regenerative models, phosphorylated ribosomal protein S6 (p-RPS6) is up-regulated in neurons, which is often associated with an activation of the mTOR (mammalian target of rapamycin) pathway. However, the exact contribution of posttranslational modifications of this ribosomal protein in CNS regeneration remains elusive. In this study, we demonstrate that RPS6 phosphorylation is essential for PNS and CNS regeneration in mice. We show that this phosphorylation is induced during the preconditioning effect in dorsal root ganglion (DRG) neurons and that it is controlled by the p90S6 kinase RSK2. Our results reveal that RSK2 controls the preconditioning effect and that the RSK2-RPS6 axis is key for this process, as well as for PNS regeneration. Finally, we demonstrate that RSK2 promotes CNS regeneration in the dorsal column, spinal cord synaptic plasticity, and target innervation leading to functional recovery. Our data establish the critical role of RPS6 phosphorylation controlled by RSK2 in CNS regeneration and give new insights into the mechanisms related to axon growth and circuit formation after traumatic lesion.


Asunto(s)
Axones , Regeneración Nerviosa , Proteínas Quinasas S6 Ribosómicas 90-kDa , Animales , Ratones , Axones/metabolismo , Sistema Nervioso Central , Regeneración Nerviosa/fisiología , Neuronas/fisiología , Médula Espinal
4.
Sci Adv ; 8(49): eade7823, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36490341

RESUMEN

PIK3CA-related overgrowth syndrome (PROS) is a genetic disorder caused by somatic mosaic gain-of-function mutations of PIK3CA. Clinical presentation of patients is diverse and associated with endocrine disruption. Adipose tissue is frequently involved, but its role in disease development and progression has not been elucidated. Here, we created a mouse model of PIK3CA-related adipose tissue overgrowth that recapitulates patient phenotype. We demonstrate that PIK3CA mutation leads to GLUT4 membrane accumulation with a negative feedback loop on insulin secretion, a burst of liver IGFBP1 synthesis with IGF-1 sequestration, and low circulating levels. Mouse phenotype was mainly driven through AKT2. We also observed that PIK3CA mutation induces metabolic reprogramming with Warburg-like effect and protein and lipid synthesis, hallmarks of cancer cells, in vitro, in vivo, and in patients. We lastly show that alpelisib is efficient at preventing and improving PIK3CA-adipose tissue overgrowth and reversing metabolomic anomalies in both animal models and patients.


Asunto(s)
Tejido Adiposo , Fosfatidilinositol 3-Quinasa Clase I , Mutación con Ganancia de Función , Animales , Ratones , Tejido Adiposo/metabolismo , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Mutación con Ganancia de Función/genética , Mutación , Fenotipo
5.
Front Cell Dev Biol ; 10: 949196, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36036012

RESUMEN

Genetic evidence in living organisms from yeast to plants and animals, including humans, unquestionably identifies the Target Of Rapamycin kinase (TOR or mTOR for mammalian/mechanistic) signal transduction pathway as a master regulator of growth through the control of cell size and cell number. Among the mTOR targets, the activation of p70 S6 kinase 1 (S6K1) is exquisitely sensitive to nutrient availability and rapamycin inhibition. Of note, in vivo analysis of mutant flies and mice reveals that S6K1 predominantly regulates cell size versus cell proliferation. Here we review the putative mechanisms of S6K1 action on cell size by considering the main functional categories of S6K1 targets: substrates involved in nucleic acid and protein synthesis, fat mass accumulation, retrograde control of insulin action, senescence program and cytoskeleton organization. We discuss how S6K1 may be involved in the observed interconnection between cell size, regenerative and ageing responses.

6.
Nat Commun ; 12(1): 3660, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34135321

RESUMEN

The mechanistic target of rapamycin complex 1 (mTORC1) integrates cellular nutrient signaling and hormonal cues to control metabolism. We have previously shown that constitutive nutrient signaling to mTORC1 by means of genetic activation of RagA (expression of GTP-locked RagA, or RagAGTP) in mice resulted in a fatal energetic crisis at birth. Herein, we rescue neonatal lethality in RagAGTP mice and find morphometric and metabolic alterations that span glucose, lipid, ketone, bile acid and amino acid homeostasis in adults, and a median lifespan of nine months. Proteomic and metabolomic analyses of livers from RagAGTP mice reveal a failed metabolic adaptation to fasting due to a global impairment in PPARα transcriptional program. These metabolic defects are partially recapitulated by restricting activation of RagA to hepatocytes, and revert by pharmacological inhibition of mTORC1. Constitutive hepatic nutrient signaling does not cause hepatocellular damage and carcinomas, unlike genetic activation of growth factor signaling upstream of mTORC1. In summary, RagA signaling dictates dynamic responses to feeding-fasting cycles to tune metabolism so as to match the nutritional state.


Asunto(s)
Ayuno/metabolismo , Hígado/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Transducción de Señal , Animales , Modelos Animales de Enfermedad , Glucosa/metabolismo , Homeostasis , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Proteínas de Unión al GTP Monoméricas/genética , Nutrientes/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Fenotipo , Proteómica , Transducción de Señal/efectos de los fármacos , Sirolimus/administración & dosificación , Sirolimus/farmacología , Transcripción Genética/efectos de los fármacos , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa/metabolismo
8.
Nat Commun ; 11(1): 3200, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32581239

RESUMEN

mTOR activation is essential and sufficient to cause polycystic kidneys in Tuberous Sclerosis Complex (TSC) and other genetic disorders. In disease models, a sharp increase of proliferation and cyst formation correlates with a dramatic loss of oriented cell division (OCD). We find that OCD distortion is intrinsically due to S6 kinase 1 (S6K1) activation. The concomitant loss of S6K1 in Tsc1-mutant mice restores OCD but does not decrease hyperproliferation, leading to non-cystic harmonious hyper growth of kidneys. Mass spectrometry-based phosphoproteomics for S6K1 substrates revealed Afadin, a known component of cell-cell junctions required to couple intercellular adhesions and cortical cues to spindle orientation. Afadin is directly phosphorylated by S6K1 and abnormally decorates the apical surface of Tsc1-mutant cells with E-cadherin and α-catenin. Our data reveal that S6K1 hyperactivity alters centrosome positioning in mitotic cells, affecting oriented cell division and promoting kidney cysts in conditions of mTOR hyperactivity.


Asunto(s)
División Celular , Cinesinas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Miosinas/metabolismo , Enfermedades Renales Poliquísticas/patología , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Animales , Línea Celular , Cinesinas/genética , Ratones , Ratones Mutantes , Mutación , Miosinas/genética , Fosforilación , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Transducción de Señal , Esclerosis Tuberosa/genética , Esclerosis Tuberosa/metabolismo , Esclerosis Tuberosa/patología , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa/metabolismo
9.
Dev Cell ; 51(1): 113-128.e9, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31447265

RESUMEN

Employing inducible genetically engineered and orthotopic mouse models, we demonstrate a key role for transcriptional regulator Yap in maintenance of Kras-mutant pancreatic tumors. Integrated transcriptional and metabolomics analysis reveals that Yap transcribes Myc and cooperates with Myc to maintain global transcription of metabolic genes. Yap loss triggers acute metabolic stress, which causes tumor regression while inducing epigenetic reprogramming and Sox2 upregulation in a subset of pancreatic neoplastic cells. Sox2 restores Myc expression and metabolic homeostasis in Yap-deficient neoplastic ductal cells, which gradually re-differentiate into acinar-like cells, partially restoring pancreatic parenchyma in vivo. Both the short-term and long-term effects of Yap loss in inducing cell death and re-differentiation, respectively, are blunted in advanced, poorly differentiated p53-mutant pancreatic tumors. Collectively, these findings reveal a highly dynamic and interdependent metabolic, transcriptional, and epigenetic regulatory network governed by Yap, Myc, Sox2, and p53 that dictates pancreatic tumor metabolism, growth, survival, and differentiation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adenocarcinoma/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Factores de Transcripción SOXB1/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Metilación de ADN , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Homeostasis , Humanos , Ratones , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP
10.
Dev Cell ; 49(3): 425-443.e9, 2019 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-31063758

RESUMEN

Merlin/NF2 is a bona fide tumor suppressor whose mutations underlie inherited tumor syndrome neurofibromatosis type 2 (NF2), as well as various sporadic cancers including kidney cancer. Multiple Merlin/NF2 effector pathways including the Hippo-YAP/TAZ pathway have been identified. However, the molecular mechanisms underpinning the growth and survival of NF2-mutant tumors remain poorly understood. Using an inducible orthotopic kidney tumor model, we demonstrate that YAP/TAZ silencing is sufficient to induce regression of pre-established NF2-deficient tumors. Mechanistically, YAP/TAZ depletion diminishes glycolysis-dependent growth and increases mitochondrial respiration and reactive oxygen species (ROS) buildup, resulting in oxidative-stress-induced cell death when challenged by nutrient stress. Furthermore, we identify lysosome-mediated cAMP-PKA/EPAC-dependent activation of RAF-MEK-ERK signaling as a resistance mechanism to YAP/TAZ inhibition. Finally, unbiased analysis of TCGA primary kidney tumor transcriptomes confirms a positive correlation of a YAP/TAZ signature with glycolysis and inverse correlations with oxidative phosphorylation and lysosomal gene expression, supporting the clinical relevance of our findings.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Carcinoma de Células Renales/metabolismo , Neoplasias Renales/metabolismo , Neurofibromina 2/deficiencia , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Glucólisis , Xenoinjertos , Humanos , Neoplasias Renales/genética , Neoplasias Renales/patología , Sistema de Señalización de MAP Quinasas , Ratones , Ratones SCID , Neurofibromatosis 2/genética , Neurofibromatosis 2/metabolismo , Neurofibromatosis 2/patología , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Fosforilación Oxidativa , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Transactivadores , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Proteínas Señalizadoras YAP
11.
Nat Commun ; 10(1): 1566, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30952952

RESUMEN

The class 3 phosphoinositide 3-kinase (PI3K) is required for lysosomal degradation by autophagy and vesicular trafficking, assuring nutrient availability. Mitochondrial lipid catabolism is another energy source. Autophagy and mitochondrial metabolism are transcriptionally controlled by nutrient sensing nuclear receptors. However, the class 3 PI3K contribution to this regulation is unknown. We show that liver-specific inactivation of Vps15, the essential regulatory subunit of the class 3 PI3K, elicits mitochondrial depletion and failure to oxidize fatty acids. Mechanistically, transcriptional activity of Peroxisome Proliferator Activated Receptor alpha (PPARα), a nuclear receptor orchestrating lipid catabolism, is blunted in Vps15-deficient livers. We find PPARα repressors Histone Deacetylase 3 (Hdac3) and Nuclear receptor co-repressor 1 (NCoR1) accumulated in Vps15-deficient livers due to defective autophagy. Activation of PPARα or inhibition of Hdac3 restored mitochondrial biogenesis and lipid oxidation in Vps15-deficient hepatocytes. These findings reveal roles for the class 3 PI3K and autophagy in transcriptional coordination of mitochondrial metabolism.


Asunto(s)
Autofagia/fisiología , Metabolismo de los Lípidos , Mitocondrias/metabolismo , PPAR alfa/metabolismo , Fosfatidilinositol 3-Quinasas/fisiología , Animales , Autofagia/efectos de los fármacos , Autofagia/genética , Fenofibrato/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histona Desacetilasas/fisiología , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Co-Represor 1 de Receptor Nuclear/genética , Co-Represor 1 de Receptor Nuclear/metabolismo , Co-Represor 1 de Receptor Nuclear/fisiología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Transcripción Genética/efectos de los fármacos , Proteína de Clasificación Vacuolar VPS15/genética , Proteína de Clasificación Vacuolar VPS15/metabolismo , Proteína de Clasificación Vacuolar VPS15/fisiología
13.
EMBO J ; 38(1)2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30420558

RESUMEN

As a consequence of impaired glucose or fatty acid metabolism, bioenergetic stress in skeletal muscles may trigger myopathy and rhabdomyolysis. Genetic mutations causing loss of function of the LPIN1 gene frequently lead to severe rhabdomyolysis bouts in children, though the metabolic alterations and possible therapeutic interventions remain elusive. Here, we show that lipin1 deficiency in mouse skeletal muscles is sufficient to trigger myopathy. Strikingly, muscle fibers display strong accumulation of both neutral and phospholipids. The metabolic lipid imbalance can be traced to an altered fatty acid synthesis and fatty acid oxidation, accompanied by a defect in acyl chain elongation and desaturation. As an underlying cause, we reveal a severe sarcoplasmic reticulum (SR) stress, leading to the activation of the lipogenic SREBP1c/SREBP2 factors, the accumulation of the Fgf21 cytokine, and alterations of SR-mitochondria morphology. Importantly, pharmacological treatments with the chaperone TUDCA and the fatty acid oxidation activator bezafibrate improve muscle histology and strength of lipin1 mutants. Our data reveal that SR stress and alterations in SR-mitochondria contacts are contributing factors and potential intervention targets of the myopathy associated with lipin1 deficiency.


Asunto(s)
Estrés del Retículo Endoplásmico/genética , Enfermedades Musculares/genética , Fosfatidato Fosfatasa/genética , Retículo Sarcoplasmático/metabolismo , Ácido Tauroquenodesoxicólico/farmacología , Animales , Estrés del Retículo Endoplásmico/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Masculino , Ratones , Ratones Transgénicos , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Chaperonas Moleculares/farmacología , Chaperonas Moleculares/uso terapéutico , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Enfermedades Musculares/tratamiento farmacológico , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/patología , Ácido Tauroquenodesoxicólico/uso terapéutico
14.
JCI Insight ; 3(3)2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29415880

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a highly prevalent and devastating condition for which no curative treatment is available. Exaggerated lung cell senescence may be a major pathogenic factor. Here, we investigated the potential role for mTOR signaling in lung cell senescence and alterations in COPD using lung tissue and derived cultured cells from patients with COPD and from age- and sex-matched control smokers. Cell senescence in COPD was linked to mTOR activation, and mTOR inhibition by low-dose rapamycin prevented cell senescence and inhibited the proinflammatory senescence-associated secretory phenotype. To explore whether mTOR activation was a causal pathogenic factor, we developed transgenic mice exhibiting mTOR overactivity in lung vascular cells or alveolar epithelial cells. In this model, mTOR activation was sufficient to induce lung cell senescence and to mimic COPD lung alterations, with the rapid development of lung emphysema, pulmonary hypertension, and inflammation. These findings support a causal relationship between mTOR activation, lung cell senescence, and lung alterations in COPD, thereby identifying the mTOR pathway as a potentially new therapeutic target in COPD.


Asunto(s)
Pulmón/patología , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfisema Pulmonar/patología , Serina-Treonina Quinasas TOR/metabolismo , Anciano , Animales , Estudios de Casos y Controles , Células Cultivadas , Senescencia Celular/efectos de los fármacos , Femenino , Humanos , Pulmón/citología , Pulmón/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Cultivo Primario de Células , Enfisema Pulmonar/genética , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/genética , Fumar Tabaco/patología , Proteína 1 del Complejo de la Esclerosis Tuberosa/deficiencia , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética
15.
J Clin Invest ; 127(5): 1873-1888, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28394260

RESUMEN

Worldwide epidemics of metabolic diseases, including liver steatosis, are associated with an increased frequency of malignancies, showing the highest positive correlation for liver cancer. The heterogeneity of liver cancer represents a clinical challenge. In liver, the transcription factor PPARγ promotes metabolic adaptations of lipogenesis and aerobic glycolysis under the control of Akt2 activity, but the role of PPARγ in liver tumorigenesis is unknown. Here we have combined preclinical mouse models of liver cancer and genetic studies of a human liver biopsy atlas with the aim of identifying putative therapeutic targets in the context of liver steatosis and cancer. We have revealed a protumoral interaction of Akt2 signaling with hepatocyte nuclear factor 1α (HNF1α) and PPARγ, transcription factors that are master regulators of hepatocyte and adipocyte differentiation, respectively. Akt2 phosphorylates and inhibits HNF1α, thus relieving the suppression of hepatic PPARγ expression and promoting tumorigenesis. Finally, we observed that pharmacological inhibition of PPARγ is therapeutically effective in a preclinical murine model of steatosis-associated liver cancer. Taken together, our studies in humans and mice reveal that Akt2 controls hepatic tumorigenesis through crosstalk between HNF1α and PPARγ.


Asunto(s)
Hígado Graso/metabolismo , Regulación Neoplásica de la Expresión Génica , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Neoplasias Hepáticas Experimentales/metabolismo , PPAR gamma/biosíntesis , Transducción de Señal , Transcripción Genética , Animales , Línea Celular Tumoral , Hígado Graso/genética , Células HEK293 , Factor Nuclear 1-alfa del Hepatocito/genética , Humanos , Neoplasias Hepáticas Experimentales/genética , Ratones , Ratones Transgénicos , PPAR gamma/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo
16.
Sci Rep ; 7(1): 1224, 2017 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-28450740

RESUMEN

Protein synthesis is traditionally associated with specific cytoplasmic compartments. We now show that OFD1, a centrosomal/basal body protein, interacts with components of the Preinitiation complex of translation (PIC) and of the eukaryotic Initiation Factor (eIF)4F complex and modulates the translation of specific mRNA targets in the kidney. We demonstrate that OFD1 cooperates with the mRNA binding protein Bicc1 to functionally control the protein synthesis machinery at the centrosome where also the PIC and eIF4F components were shown to localize in mammalian cells. Interestingly, Ofd1 and Bicc1 are both involved in renal cystogenesis and selected targets were shown to accumulate in two models of inherited renal cystic disease. Our results suggest a possible role for the centrosome as a specialized station to modulate translation for specific functions of the nearby ciliary structures and may provide functional clues for the understanding of renal cystic disease.


Asunto(s)
Centrosoma/metabolismo , Regulación de la Expresión Génica , Biosíntesis de Proteínas , Mapeo de Interacción de Proteínas , Proteínas/metabolismo , Proteínas de Unión al ARN/metabolismo , Células HEK293 , Células HeLa , Humanos
17.
EMBO J ; 36(6): 736-750, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28242756

RESUMEN

The inactivation of S6 kinases mimics several aspects of caloric restriction, including small body size, increased insulin sensitivity and longevity. However, the impact of S6 kinase activity on cellular senescence remains to be established. Here, we show that the constitutive activation of mammalian target of rapamycin complex 1 (mTORC1) by tuberous sclerosis complex (TSC) mutations induces a premature senescence programme in fibroblasts that relies on S6 kinases. To determine novel molecular targets linking S6 kinase activation to the control of senescence, we set up a chemical genetic screen, leading to the identification of the nuclear epigenetic factor ZRF1 (also known as DNAJC2, MIDA1, Mpp11). S6 kinases phosphorylate ZRF1 on Ser47 in cultured cells and in mammalian tissues in vivo Knock-down of ZRF1 or expression of a phosphorylation mutant is sufficient to blunt the S6 kinase-dependent senescence programme. This is traced by a sharp alteration in p16 levels, the cell cycle inhibitor and a master regulator of senescence. Our findings reveal a mechanism by which nutrient sensing pathways impact on cell senescence through the activation of mTORC1-S6 kinases and the phosphorylation of ZRF1.


Asunto(s)
Envejecimiento , Proteínas del Choque Térmico HSP40/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Quinasas S6 Ribosómicas/metabolismo , Animales , Células Cultivadas , Proteínas de Unión al ADN , Ratones , Chaperonas Moleculares , Fosforilación , Proteínas de Unión al ARN
18.
Cell Rep ; 17(2): 501-513, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27705797

RESUMEN

Loss of skeletal muscle mass and force aggravates age-related sarcopenia and numerous pathologies, such as cancer and diabetes. The AKT-mTORC1 pathway plays a major role in stimulating adult muscle growth; however, the functional role of its downstream mediators in vivo is unknown. Here, we show that simultaneous inhibition of mTOR signaling to both S6K1 and 4E-BP1 is sufficient to reduce AKT-induced muscle growth and render it insensitive to the mTORC1-inhibitor rapamycin. Surprisingly, lack of mTOR signaling to 4E-BP1 only, or deletion of S6K1 alone, is not sufficient to reduce muscle hypertrophy or alter its sensitivity to rapamycin. However, we report that, while not required for muscle growth, S6K1 is essential for maintaining muscle structure and force production. Hypertrophy in the absence of S6K1 is characterized by compromised ribosome biogenesis and the formation of p62-positive protein aggregates. These findings identify S6K1 as a crucial player for maintaining muscle function during hypertrophy.


Asunto(s)
Proteínas Portadoras/genética , Hipertrofia/genética , Músculo Esquelético/metabolismo , Fosfoproteínas/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Serina-Treonina Quinasas TOR/genética , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Factores Eucarióticos de Iniciación , Humanos , Hipertrofia/metabolismo , Hipertrofia/patología , Ratones , Ratones Noqueados , Músculo Esquelético/crecimiento & desarrollo , Proteína Oncogénica v-akt/genética , Péptidos/genética , Fosfoproteínas/metabolismo , Fosforilación , Agregado de Proteínas/genética , Ribosomas/genética , Ribosomas/metabolismo , Sarcopenia/genética , Sarcopenia/metabolismo , Sarcopenia/patología , Transducción de Señal , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo
19.
Am J Respir Cell Mol Biol ; 55(3): 352-67, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26991739

RESUMEN

Constitutive activation of the mammalian target of rapamycin (mTOR) complexes mTORC1 and mTORC2 is associated with pulmonary hypertension (PH) and sustained growth of pulmonary artery (PA) smooth muscle cells (SMCs). We investigated whether selective mTORC1 activation in SMCs induced by deleting the negative mTORC1 regulator tuberous sclerosis complex 1 gene (TSC1) was sufficient to produce PH in mice. Mice expressing Cre recombinase under SM22 promoter control were crossed with TSC1(LoxP/LoxP) mice to generate SM22-TSC1(-/-) mice. At 8 weeks of age, SM22-TSC1(-/-) mice exhibited PH with marked increases in distal PA muscularization and Ki67-positive PASMC counts, without systemic hypertension or cardiac dysfunction. Marked activation of the mTORC1 substrates S6 kinase and 4E-BP and the mTORC2 substrates p-Akt(Ser473) and glycogen synthase kinase 3 was found in the lungs and pulmonary vessels of SM22-TSC1(-/-) mice when compared with control mice. Treatment with 5 mg/kg rapamycin for 3 weeks to inhibit mTORC1 and mTORC2 fully reversed PH in SM22-TSC1(-/-) mice. In chronically hypoxic mice and SM22-5HTT(+) mice exhibiting PH associated with mTORC1 and mTORC2 activation, PH was maximally attenuated by low-dose rapamycin associated with selective mTORC1 inhibition. Cultured PASMCs from SM22-TSC1(-/-), SM22-5HTT(+), and chronically hypoxic mice exhibited similar sustained growth-rate enhancement and constitutive mTORC1 and mTORC2 activation; both effects were abolished by rapamycin. Deletion of the downstream mTORC1 effectors S6 kinase 1/2 in mice also activated mTOR signaling and induced PH. We concluded that activation of mTORC1 signaling leads to increased PASMC proliferation and subsequent PH development.


Asunto(s)
Eliminación de Gen , Hipertensión Pulmonar/metabolismo , Músculo Liso/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Enfermedad Crónica , Hiperplasia , Hipertensión Pulmonar/diagnóstico por imagen , Hipoxia/complicaciones , Hipoxia/metabolismo , Hipoxia/patología , Pulmón/irrigación sanguínea , Pulmón/patología , Masculino , Metformina/farmacología , Ratones , Proteínas de Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar/patología , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Proteína 1 del Complejo de la Esclerosis Tuberosa
20.
Neurobiol Dis ; 89: 180-9, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26873552

RESUMEN

DEP-domain containing 5 (DEPDC5), encoding a repressor of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway, has recently emerged as a major gene mutated in familial focal epilepsies and focal cortical dysplasia. Here we established a global knockout rat using TALEN technology to investigate in vivo the impact of Depdc5-deficiency. Homozygous Depdc5(-/-) embryos died from embryonic day 14.5 due to a global growth delay. Constitutive mTORC1 hyperactivation was evidenced in the brains and in cultured fibroblasts of Depdc5(-/-) embryos, as reflected by enhanced phosphorylation of its downstream effectors S6K1 and rpS6. Consistently, prenatal treatment with mTORC1 inhibitor rapamycin rescued the phenotype of Depdc5(-/-) embryos. Heterozygous Depdc5(+/-) rats developed normally and exhibited no spontaneous electroclinical seizures, but had altered cortical neuron excitability and firing patterns. Depdc5(+/-) rats displayed cortical cytomegalic dysmorphic neurons and balloon-like cells strongly expressing phosphorylated rpS6, indicative of mTORC1 upregulation, and not observed after prenatal rapamycin treatment. These neuropathological abnormalities are reminiscent of the hallmark brain pathology of human focal cortical dysplasia. Altogether, Depdc5 knockout rats exhibit multiple features of rodent models of mTORopathies, and thus, stand as a relevant model to study their underlying pathogenic mechanisms.


Asunto(s)
Corteza Cerebral/anomalías , Modelos Animales de Enfermedad , Desarrollo Embrionario/genética , Complejos Multiproteicos/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Animales Modificados Genéticamente , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/fisiopatología , Desarrollo Embrionario/efectos de los fármacos , Fibroblastos/metabolismo , Técnicas de Inactivación de Genes , Genotipo , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos/antagonistas & inhibidores , Neuronas/patología , Neuronas/fisiología , Fosforilación , Ratas , Ratas Endogámicas F344 , Ratas Wistar , Proteínas Represoras/metabolismo , Transducción de Señal/efectos de los fármacos , Sirolimus/administración & dosificación , Serina-Treonina Quinasas TOR/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...