Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(8)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38675717

RESUMEN

In the context of peptide drug development, glycosylation plays a pivotal role. Accordingly, L-type peptides were synthesized predicated upon the PD-1/PD-L1 blocker DPPA-1. Subsequent glycosylation resulted in the production of two distinct glycopeptides, D-glu-LPPA-1 and D-gal-LPPA-1, by using D-glucose (D-glu) and D-galactose (D-gal), respectively, during glycosylation. Both glycopeptides significantly inhibited the interaction between PD-1 and PD-L1, and the measured half maximal inhibitory concentrations (IC50s) were 75.5 µM and 101.9 µM for D-glu-LPPA-1 and D-gal-LPPA-1, respectively. Furthermore, D-gal-LPPA-1 displayed a pronounced ability to restore T-cell functionality. In an MC38 tumor-bearing mouse model, D-gal-LPPA-1 demonstrated a significant inhibitory effect. Notably, D-gal-LPPA-1 substantially augmented the abundance and functionality of CD8+ T cells in the tumor microenvironment. Additionally, in the lymph nodes and spleens, D-gal-LPPA-1 significantly increased the proportion of CD8+ T cells secreting interferon-gamma (IFN-γ). These strong findings position D-gal-LPPA-1 as a potent enhancer of the antitumor immune response in MC38 tumor-bearing mice, underscoring its potential as a formidable PD-1/PD-L1 blocking agent.


Asunto(s)
Antígeno B7-H1 , Receptor de Muerte Celular Programada 1 , Glicosilación , Animales , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inhibidores , Ratones , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Humanos , Diseño de Fármacos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/química , Inhibidores de Puntos de Control Inmunológico/síntesis química , Glicopéptidos/química , Glicopéptidos/síntesis química , Glicopéptidos/farmacología , Microambiente Tumoral/efectos de los fármacos , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral
2.
J Fungi (Basel) ; 9(10)2023 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-37888250

RESUMEN

Trichoderma hamatum (Bonord.) Bainier (T. hamatum) belongs to Hypocreaceae family, Trichoderma genus. Trichoderma spp. are prominently known for their biocontrol activities and plant growth promotion. Hence, T. hamatum also possess several beneficial activities, such as antimicrobial activity, antioxidant activity, insecticidal activity, herbicidal activity, and plant growth promotion; in addition, it holds several other beneficial properties, such as resistance to dichlorodiphenyltrichloroethane (DDT) and degradation of DDT by certain enzymes and production of certain polysaccharide-degrading enzymes. Hence, the current review discusses the beneficial properties of T. hamatum and describes the gaps that need to be further considered in future studies, such as T. hamatum's potentiality against human pathogens and, in contrast, its role as an opportunistic human pathogen. Moreover, there is a need for substantial study on its antiviral and antioxidant activities.

3.
FEMS Microbiol Ecol ; 99(8)2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37365694

RESUMEN

The roots of the medicinal plant Codonopsis pilosula (Franch.) Nannf (C. pilosula) possess most medicinal supplements. In current research on C. pilosula root endophytes were isolated, identified, and evaluated for their antimicrobial activity against human pathogens such as Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Salmonella typhi, and Pseudomonas aeruginosa and the fungi Candida albicans and Aspergillus niger. Endophytes C.P-8 and C.P-20 exhibited very significant antimicrobial activity, the secondary metabolite of C.P-8 registered at retention time 24.075 by HPLC analysis. Significant minimum inhibitory concentration (MIC) of C.P-8 was exhibited at 250 µg/ml against S. aureus and 500 µg/ml against B. subtilis. Qualitative, quantitative analyses, and partial purification of enzymes and purity was analysed by molecular weight determined by SDS‒PAGE of enzymes produced by C.P-20, amylase-64 kDa, protease-64 kDa, chitinase-30 kDa, and cellulase-54 kDa. Optimum pH and temperature of the partially purified enzymes, was carried out. The partially purified enzymes from C.P-20 displayed maximum activity at pH 6-7 and temperatures of 40°C-45°C. Moreover, the above endophytes will be useful tools for producing active enzymes and active bioantimicrobial agents against human pathogens.


Asunto(s)
Antiinfecciosos , Codonopsis , Humanos , Codonopsis/química , Codonopsis/metabolismo , Endófitos , Staphylococcus aureus , Antiinfecciosos/farmacología , Antiinfecciosos/metabolismo , Pruebas de Sensibilidad Microbiana
4.
J Adv Res ; 46: 1-15, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35811061

RESUMEN

INTRODUCTION: Beneficial microorganisms play essential roles in plant growth and induced systemic resistance (ISR) by releasing signaling molecules. Our previous study obtained the crude extract from beneficial endophyte Paecilomyces variotii, termed ZNC (ZhiNengCong), which significantly enhanced plant resistance to pathogen even at 100 ng/ml. However, the immunoreactive components of ZNC remain unclear. Here, we further identified one of the immunoreactive components of ZNC is a nucleoside 2'-deoxyguanosine (2-dG). OBJECTIVES: This paper intends to reveal the molecular mechanism of microbial-derived 2'-deoxyguanosine (2-dG) in activating plant immunity, and the role of plant-derived 2-dG in plant immunity. METHODS: The components of ZNC were separated using a high-performance liquid chromatography (HPLC), and 2-dG is identified using a HPLC-mass spectrometry system (LC-MS). Transcriptome analysis and genetic experiments were used to reveal the immune signaling pathway dependent on 2-dG activation of plant immunity. RESULTS: This study identified 2'-deoxyguanosine (2-dG) as one of the immunoreactive components from ZNC. And 2-dG significantly enhanced plant pathogen resistance even at 10 ng/ml (37.42 nM). Furthermore, 2-dG-induced resistance depends on NPR1, pattern-recognition receptors/coreceptors, ATP receptor P2K1 (DORN1), ethylene signaling but not salicylic acid accumulation. In addition, we identified Arabidopsis VENOSA4 (VEN4) was involved in 2-dG biosynthesis and could convert dGTP to 2-dG, and vne4 mutant plants were more susceptible to pathogens. CONCLUSION: In summary, microbial-derived 2-dG may act as a novel immune signaling molecule involved in plant-microorganism interactions, and VEN4 is 2-dG biosynthesis gene and plays a key role in plant immunity.


Asunto(s)
Arabidopsis , Nucleósidos , Plantas , Arabidopsis/genética , Transducción de Señal , Desoxiguanosina
5.
Heliyon ; 9(12): e22623, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38213589

RESUMEN

Small berry pomaces (SBPs) are poorly utilized as an inexpensive source of bioactive compounds. This study investigated the impact of compounding treatment on nutritional and antioxidant characteristics of combined SBPs, in comparison with single SBP. The results showed that the amounts of protein, minerals, dietary fiber (DF) and anthocyanidins were significantly (p < 0.05) higher in combined SBPs than in combined fruits. Moreover, the combined SBPs were characterized by an elevated abundance of minerals and anthocyanidins (6 kinds, and 5 kinds, respectively), substantiating the effectiveness of compounding treatment on SBP nutrition. A total of 776 secondary phytochemicals were detected in combined SBPs by a widely targeted metabolomics approach. Each SBP contained approximately 100 kinds of unique natural antioxidants. Furthermore, the combined SBPs group had the highest antioxidant activity compared with single SBP. Meanwhile, the antioxidant activities determined in combined SBPs were higher than arithmetic mean value of single SBP. The synergism and interaction of active components in different sources of SBPs play vital role in the high antioxidant capacity of combined SBPs. All the results provide reference for the comprehensive development and utilization of fruit residues. The SBPs should be highly prized for their substantial amount of nutritional and bioactive constituents, including protein, DF, essential minerals and secondary metabolites. These secondary metabolites are positively associated with antioxidant benefits. The present study summarizes the knowledge about bioactive compounds and antioxidant activities of combined SBPs group and discusses the relevant mechanisms. A conclusion can be educed that combined process is an effective way to improve properties of the pomaces.

6.
Cancer Manag Res ; 14: 3335-3345, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36465707

RESUMEN

Introduction: Chitosan is the product of the natural polysaccharide chitin removing part of the acetyl group, and exhibits various physiological and bioactive functions. Selenium modification has been proved to further enhance the chitosan bioactivities, and has been a hot topic recently. Methods: The present study aimed to investigate the potential inhibitory mechanism of selenium-modified chitosan (SMC) on HepG2 cells through MTT assays, morphological observation, annexin V-FITC/PI double staining, mitochondrial membrane potential determination, cell-cycle detection, Western blotting, and two-dimensional gel electrophoresis (2-DE). Results: The results indicated that SMC can induce HepG2 cell apoptosis with the cell cycle arrested in the S and G2/M phases and gradual disruption of mitochondrial membrane potential, reduce the expression of Bcl2, and improve the expression of Bax, cytochrome C, cleaved caspase 9, and cleaved caspase 3. Also, 2-DE results showed that tubulin α1 B chain, myosin regulatory light chain 12A, calmodulin, UPF0568 protein chromosome 14 open reading frame 166, and the cytochrome C oxidase subunit 5B of HepG2 cells were downregulated in HepG2 cells after SMC treatment. Discussion: These data suggested that HepG2 cells induced apoptosis after SMC treatment via blocking the cell cycle in the S and G2/M phases, which might be mediated through the mitochondrial apoptotic pathway. These results could be of benefit to future practical applications of SMC in the food and drug fields.

7.
Polymers (Basel) ; 14(14)2022 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-35890675

RESUMEN

The ethanol precipitation method has been widely-used for Dendrobium officinale polysaccharides preparation. However, the alcohol-soluble fractions have always been ignored, which causes significant wastes of resources and energies. In this study, the extraction, physicochemical properties, and immune regulation activity of an edible D. officinale polysaccharide (DOPs) isolated from the supernatant after 75% ethanol precipitation were systematically investigated. The structural characteristics determination results showed that DOPs was mainly composed of glucose and mannose at a molar ratio of 1.00:5.78 with an average molecular weight of 4.56 × 103 Da, which was made up of α-(1,3)-Glcp as the main skeleton, and the α-(1,4)-Glcp and ß-(1,4)-Manp as the branches. Subsequently, the cyclophosphamide (CTX)-induced immunosuppressive mice model was established, and the results demonstrated that DOPs could dose-dependently protect the immune organs against CTX damage, improve the immune cells activities, and promote the immune-related cytokines (IL-2, IFN-γ and TNF-α) secretions. Furthermore, DOPs treatment also effectively enhanced the antioxidant enzymes levels (SOD, GSH-Px) in sera and livers, therefore weakening the oxidative damage of CTX-treated mice. Considering these above data, DOPs presented great potential to be explored as a natural antioxidant and supplement for functional foods.

8.
Front Bioeng Biotechnol ; 9: 671879, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34055763

RESUMEN

Compared with endophytes, metabolites from endophytes (MEs) have great potential in agriculture. However, a technique for industrializing the production of MEs is still scarce. Moreover, the establishment of effective methods for evaluating the quality of MEs is hampered by the fact that some compounds with beneficial effects on crops have not been clearly identified. Herein, a system was established for the production, quality control and application of MEs by using the extract from Paecilomyces variotii SJ1 (ZNC). First, the extraction conditions of ZNC were optimized through response surface methodology, after which each batch (500 L) met the consumption requirements of crops in 7,467 hectares. Then, chromatographic fingerprinting and enzyme-linked immunosorbent assay were applied to evaluate the similarity and specificity of unknown effective components in ZNC, ensuring a similarity of more than 90% and a quantitative accuracy of greater than 99.9% for the products from different batches. Finally, the bioactivity of industrially produced ZNC was evaluated in the field, and it significantly increased the potato yields by 4.4-10.8%. Overall, we have established a practical technical system for the large-scale application of ZNC in agriculture.

9.
Carbohydr Polym ; 262: 117971, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33838835

RESUMEN

Chondroitin sulfate (CS) chains containing GlcUAß1-3GalNAc(4S,6S) (E unit) have been shown to be involved in various physiological and pathological processes. However, commercial E unit-rich CS (CS-E) is difficult to produce on a large scale due to expensive and limited squid cartilage resources. In this study, a novel CS-E (CS-nE) was isolated from the cheap and abundant cartilage of the giant squid Dosidicus gigas. The CS-nE has a surprisingly large molecular mass of 696 kDa and a relatively high E unit proportion (44.5 %). It can interact with various growth factors, including HGF, bFGF, pleiotrophin, and HB-EGF, with high affinity, and exhibits dose-dependent anti-metastatic activity. Furthermore, the E unit-rich decasaccharide selectively prepared from CS-nE has been shown to be the minimal functional domain with the strongest antitumor metastatic activity. Taken together, CS-nE will be a very promising candidate for the development of CS-E-based pharmaceutical products.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Cartílago/química , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacología , Decapodiformes/química , Animales , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión/métodos , Citocinas/metabolismo , Disacáridos/química , Factor de Crecimiento Epidérmico/metabolismo , Femenino , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Factor de Crecimiento Similar a EGF de Unión a Heparina/metabolismo , Factor de Crecimiento de Hepatocito/metabolismo , Ratones , Metástasis de la Neoplasia
10.
BMC Plant Biol ; 20(1): 169, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32293278

RESUMEN

BACKGROUND: Plant viruses cause severe economic losses in agricultural production. An ultrahigh activity plant immune inducer (i.e., ZhiNengCong, ZNC) was extracted from endophytic fungi, and it could promote plant growth and enhance resistance to bacteria. However, the antiviral function has not been studied. Our study aims to evaluate the antiviral molecular mechanisms of ZNC in tobacco. RESULTS: Here, we used Potato X virus (PVX), wild-type tobacco and NahG transgenic tobacco as materials to study the resistance of ZNC to virus. ZNC exhibited a high activity in enhancing resistance to viruses and showed optimal use concentration at 100-150 ng/mL. ZNC also induced reactive oxygen species accumulation, increased salicylic acid (SA) content by upregulating the expression of phenylalanine ammonia lyase (PAL) gene and activated SA signaling pathway. We generated transcriptome profiles from ZNC-treated seedlings using RNA sequencing. The first GO term in biological process was positive regulation of post-transcriptional gene silencing, and the subsequent results showed that ZNC promoted RNA silencing. ZNC-sprayed wild-type leaves showed decreased infection areas, whereas ZNC failed to induce a protective effect against PVX in NahG leaves. CONCLUSION: All results indicate that ZNC is an ultrahigh-activity immune inducer, and it could enhance tobacco resistance to PVX at low concentration by positively regulating the RNA silencing via SA pathway. The antiviral mechanism of ZNC was first revealed in this study, and this study provides a new antiviral bioagent.


Asunto(s)
Agentes de Control Biológico/farmacología , Nicotiana/efectos de los fármacos , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/virología , Potexvirus/inmunología , Interferencia de ARN , Agentes de Control Biológico/aislamiento & purificación , Endófitos/química , Hongos/química , Regulación de la Expresión Génica de las Plantas , Fenilanina Amoníaco-Liasa/genética , Hojas de la Planta/inmunología , Hojas de la Planta/virología , Ácido Salicílico , Nicotiana/inmunología , Nicotiana/virología
11.
Rice (N Y) ; 12(1): 90, 2019 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-31832906

RESUMEN

Polygalacturonase-inhibiting proteins (PGIPs) have been shown to recognize fungal polygalacturonases (PGs), which initiate innate immunity in various plant species. Notably, the connection between rice OsPGIPs and PGs in Xanthomonas oryzae pv. oryzicola (Xoc), which causes bacterial leaf streak (BLS), remains unclear. Here, we show that OsPGIP1 was strongly induced after inoculating rice with the Xoc strain RS105. Furthermore, OsPGIP1-overexpressing (OV) and RNA interference (RNAi) rice lines increased and decreased, respectively, the resistance of rice to RS105, indicating that OsPGIP1 contributes to BLS resistance. Subsequently, we generated the unique PG mutant RS105Δpg, the virulence of which is attenuated compared to that of RS105. Surprisingly, the lesion lengths caused by RS105Δpg were similar to those caused by RS105 in the OV lines compared with wild-type ZH11 with reduced Xoc susceptibility. However, the lesion lengths caused by RS105Δpg were still significantly shorter in the OV lines than in ZH11, implying that OsPGIP1-mediated BLS resistance could respond to other virulence factors in addition to PGs. To explore the OsPGIP1-mediated resistance, RNA-seq analysis were performed and showed that many plant cell wall-associated genes and several MYB transcription factor genes were specifically expressed or more highly induced in the OV lines compared to ZH11 postinoculation with RS105. Consistent with the expression of the differentially expressed genes, the OV plants accumulated a higher content of jasmonic acid (JA) than ZH11 postinoculation with RS105, suggesting that the OsPGIP1-mediated resistance to BLS is mainly dependent on the plant cell wall-associated immunity and the JA signaling pathway.

12.
Front Microbiol ; 9: 167, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29472911

RESUMEN

Endo-type alginate lyases usually degrade alginate completely into various size-defined unsaturated oligosaccharide products (≥disaccharides), while exoenzymes primarily produce monosaccharide products including saturated mannuronate (M) and guluronate (G) units and particularly unsaturated Δ units. Recently, two bifunctional alginate lyases have been identified as endolytic but M- and G-producing with variable action modes. However, endolytic Δ-producing alginate lyases remain undiscovered. Herein, a new Flammeovirga protein, Aly2, was classified into the polysaccharide lyase 7 superfamily. The recombinant enzyme and its truncated protein showed similar stable biochemical characteristics. Using different sugar chains as testing substrates, we demonstrated that the two enzymes are bifunctional while G-preferring, endolytic whereas monosaccharide-producing. Furthermore, the catalytic module of Aly2 can vary the action modes depending on the terminus type, molecular size, and M/G content of the substrate, thereby yielding different levels of M, G, and Δ units. Notably, the enzymes preferentially produce Δ units when digesting small size-defined oligosaccharide substrates, particularly the smallest substrate (unsaturated tetrasaccharide fractions). Deletion of the non-catalytic region of Aly2 caused weak changes in the action modes and biochemical characteristics. This study provided extended insights into alginate lyase groups with variable action modes for accurate enzyme use.

13.
J Biol Chem ; 293(12): 4230-4243, 2018 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-29414785

RESUMEN

GlcUAß1-3GalNAc(4S,6S) (E unit)-rich domains have been shown to play key roles in various biological functions of chondroitin sulfate (CS). However, an enzyme that can specifically isolate such domains through the selective digestion of other domains in polysaccharides has not yet been reported. Here, we identified a glycosaminoglycan lyase from a marine bacterium Vibrio sp. FC509. This enzyme efficiently degraded hyaluronic acid (HA) and CS variants, but not E unit-rich CS-E, into unsaturated disaccharides; therefore, we designated this enzyme a CS-E-resisted HA/CS lyase (HCLase Er). We isolated a series of resistant oligosaccharides from the final product of a low-sulfated CS-E exhaustively digested by HCLase Er and found that the E units were dramatically accumulate in these resistant oligosaccharides. By determining the structures of several resistant tetrasaccharides, we observed that all of them possessed a Δ4,5HexUAα1-3GalNAc(4S,6S) at their non-reducing ends, indicating that the disulfation of GalNAc abrogates HCLase Er activity on the ß1-4 linkage between the E unit and the following disaccharide. Δ4,5HexUAα1-3GalNAc(4S,6S)ß1-4GlcUAß1-3GalNAc(4S,6S) was most strongly resistant to HCLase Er. To our knowledge, this study is the first reporting a glycosaminoglycan lyase specifically inhibited by both 4-O- and 6-O-sulfation of GalNAc. Site-directed and truncation mutagenesis experiments indicated that HCLase Er may use a general acid-base catalysis mechanism and that an extra domain (Gly739-Gln796) is critical for its activity. This enzyme will be a useful tool for structural analyses and for preparing bioactive oligosaccharides of HA and CS variants, particularly from E unit-rich CS chains.


Asunto(s)
Acetilgalactosamina/metabolismo , Proteínas Bacterianas/metabolismo , Condroitín Liasas/metabolismo , Sulfatos de Condroitina/metabolismo , Glucuronatos/metabolismo , Ácido Hialurónico/metabolismo , Vibrio/enzimología , Secuencia de Aminoácidos , Animales , Homología de Secuencia
14.
Protein Cell ; 4(10): 771-81, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24104392

RESUMEN

Arabidopsis BOTRYTIS-INDUCED KINASE1 (BIK1) is a receptor-like cytoplasmic kinase acting early in multiple signaling pathways important for plant growth and innate immunity. It is known to form a signaling complex with a cell-surface receptor FLS2 and a co-receptor kinase BAK1 to transduce signals upon perception of pathogen-associated molecular patterns (PAMPs). Although site-specific phosphorylation is speculated to mediate the activation and function of BIK1, few studies have been devoted to complete profiling of BIK1 phosphorylation residues. Here, we identified nineteen in vitro autophosphorylation sites of BIK1 including three phosphotyrosine sites, thereby proving BIK1 is a dual-specificity kinase for the first time. The kinase activity of BIK1 substitution mutants were explicitly assessed using quantitative mass spectrometry (MS). Thr-237, Thr-242 and Tyr-250 were found to most significantly affect BIK1 activity in autophosphorylation and phosphorylation of BAK1 in vitro. A structural model of BIK1 was built to further illustrate the molecular functions of specific phosphorylation residues. We also mapped new sites of FLS2 phosphorylation by BIK1, which are different from those by BAK1. These in vitro results could provide new hypotheses for more in-depth in vivo studies leading to deeper understanding of how phosphorylation contributes to BIK1 activation and mediates downstream signaling specificity.


Asunto(s)
Aminoácidos/química , Proteínas de Arabidopsis/química , Arabidopsis/enzimología , Proteínas Serina-Treonina Quinasas/química , Transducción de Señal , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/aislamiento & purificación , Regulación de la Expresión Génica de las Plantas , Inmunidad Innata , Mutación , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/aislamiento & purificación , Treonina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...