Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.947
Filtrar
1.
Int J Biol Macromol ; : 132167, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38729479

RESUMEN

The Japanese puffer, Takifugu rubripes, is a commercially important fish species in China that is under serious threat from white spot disease (cyptocaryoniasis), which leads to heavy economic losses. We previously found that interleukin-1ß (IL-1ß), an important cytokine with a potential role in resistance against pathogens, was one of the most significantly differentially up-regulated proteins in the gills and spleen of T. rubripes infected by the protozoan parasite Cryptocaryon irritans. In this study, we assessed the potential function of T. rubripes IL-1ß (TrIL-1ß) in fish infected with C. irritans. Phylogenetic analysis indicated that the TrIL-1ß protein sequence was most closely related to that of Atlantic salmon (Salmo salar) (67.2 %). The incubation experiments revealed that TrIL-1ß may reduce trophont activity by destroying membranes. Immunofluorescence experiments showed that recombinant TrIL-1ß promoted the expression of endogenous IL-1ß, which penetrated and disrupted the cell membranes of trophonts. Transmission electron microscopy showed that the IL-1ß group had less tissue damage compared with control groups of fish. IL-1ß-small interfering RNA and IL-1ß overexpression experiments were performed in head kidney primary cells, and challenge experiments were performed in vitro. Quantitative RT-PCR results showed that TrIL-1ß regulated and activated MyD88/NF-κB and MyD88/MAPK/p38 signaling pathways during C. irritans infection. TrIL-1ß also promoted the differential expression of IgM, showing that it was involved in humoral immunity of T. rubripes. The cumulative mortality experiment show that TrIL-1ß could protect fish against C. irritans infection. These results enrich current knowledge about the molecular structure of TrIL-1ß. They also suggested that recombinant TrIL-1ß could be used as an adjuvant in a subunit vaccine against C. irritans infection, which is of profound importance for the prevention and control of parasitic diseases in T. rubripes.

2.
J Nat Med ; 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704807

RESUMEN

Hepatocellular carcinoma (HCC) is a malignant tumor with extremely high mortality. The tumor microenvironment is the "soil" of its occurrence and development, and the inflammatory microenvironment is an important part of the "soil". Bile acid is closely related to the occurrence of HCC. Bile acid metabolism disorder is not only directly involved in the occurrence and development of HCC but also affects the inflammatory microenvironment of HCC. Yinchenhao decoction, a traditional Chinese medicine formula, can regulate bile acid metabolism and may affect the inflammatory microenvironment of HCC. To determine the effect of Yinchenhao decoction on bile acid metabolism in mice with HCC and to explore the possible mechanism by which Yinchenhao decoction improves the inflammatory microenvironment of HCC by regulating bile acid metabolism, we established mice model of orthotopic transplantation of hepatocellular carcinoma. These mice were treated with three doses of Yinchenhao decoction, then liver samples were collected and tested. Yinchenhao decoction can regulate the disorder of bile acid metabolism in liver cancer mice. Besides, it can improve inflammatory reactions, reduce hepatocyte degeneration and necrosis, and even reduce liver weight and the liver index. Taurochenodeoxycholic acid, hyodeoxycholic acid, and taurohyodeoxycholic acid are important molecules in the regulation of the liver inflammatory microenvironment, laying a foundation for the regulation of the liver tumor inflammatory microenvironment based on bile acids. Yinchenhao decoction may improve the inflammatory microenvironment of mice with HCC by ameliorating hepatic bile acid metabolism.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38723431

RESUMEN

The longhorned beetles are key players for the maintenance of biodiversity in the terrestrial ecosystem. As xylophagous cerambycid insects in Coleoptera, the beetles have evolved specialized olfactory and gustatory systems to recognize chemical cues in the surrounding habitats. Despite over 36,000 described species in the Cerambycidae family including a wood-boring pest Pharsalia antennata, only a limited number of them (<1 %) have been characterized regarding their chemical ecology at the molecular level. Here, we surveyed four membrane protein gene families in P. antennata related to chemoreception through transcriptomics, phylogenetics and expression profiling analyses. In total, 144 genes encoding 72 odorant receptors (ORs), 33 gustatory receptors (GRs), 23 ionotropic receptors (IRs), four sensory neuron membrane proteins (SNMPs) and 12 ionotropic glutamate receptors (iGluRs) were harvested from the transcriptome of multiple tissues including antennae and legs of both sexes. The lineage-specific expansion of PantORs possibly implied a diverse range of host plants in this beetle, supporting this correlation between the host range and olfactory receptor repertoire sizes across cerambycid species. Further phylogenetic analysis revealed that Group 2 was contributed mainly to the large OR gene repertoire in P. antennata, representing 18 genes in Group 2A and eight in Group 2B. On the other hand, some key chemosensory genes were identified by applying a phylogenetics approach, such as PantOR21 close to the 2-phenylethanol receptor in Megacyllene caryae, three carbon dioxide GRs and seven Antennal IRs (A-IRs) clades. We also determined sex- and tissue-specific expression profiles of 69 chemosensory genes, revealing the high expression of most PantORs in antennae. Noticeably, 10 sex-biased genes (six PantORs, three PantIRs and PantSNMP1a) were presented in antennae, five sex-biased PantGRs in legs and 39 sex-biased genes (15 PantORs, 13 PantGRs, eight PantIRs and three PantSNMPs) in abdomens. These findings have greatly enhanced our knowledge about the chemical ecology of P. antennata and identify candidate molecular targets for mediating smell and taste of this beetle.

5.
Mol Biol Rep ; 51(1): 622, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709309

RESUMEN

Menopause is a normal physiological process accompanied by changes in various physiological states. The incidence of vascular calcification (VC) increases each year after menopause and is closely related to osteoporosis (OP). Although many studies have investigated the links between VC and OP, the interaction mechanism of the two under conditions of estrogen loss remains unclear. MicroRNAs (miRNAs), which are involved in epigenetic modification, play a critical role in estrogen-mediated mineralization. In the past several decades, miRNAs have been identified as biomarkers or therapeutic targets in diseases. Thus, we hypothesize that these small molecules can provide new diagnostic and therapeutic approaches. In this review, we summarize the close interactions between VC and OP and the role of miRNAs in their interplay.


Asunto(s)
MicroARNs , Posmenopausia , Calcificación Vascular , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Femenino , Calcificación Vascular/genética , Calcificación Vascular/metabolismo , Posmenopausia/genética , Osteoporosis Posmenopáusica/genética , Osteoporosis Posmenopáusica/metabolismo , Estrógenos/metabolismo , Biomarcadores/metabolismo , Osteoporosis/genética , Osteoporosis/metabolismo , Epigénesis Genética
6.
Proc Biol Sci ; 291(2022): 20240055, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38689557

RESUMEN

Cooperation is common in animals, yet the specific mechanisms driving collaborative behaviour in different species remain unclear. We investigated the proximate mechanisms underlying the cooperative behaviour of bumblebees in two different tasks, where bees had to simultaneously push a block in an arena or a door at the end of a tunnel for access to reward. In both tasks, when their partner's entry into the arena/tunnel was delayed, bees took longer to first push the block/door compared with control bees that learned to push alone. In the tunnel task, just before gaining access to reward, bees were more likely to face towards their partner than expected by chance or compared with controls. These results show that bumblebees' cooperative behaviour is not simply a by-product of individual efforts but is socially influenced. We discuss how bees' turning behaviours, e.g. turning around before first reaching the door when their partner was delayed and turning back towards the door in response to seeing their partner heading towards the door, suggest the potential for active coordination. However, because these behaviours could also be interpreted as combined responses to social and secondary reinforcement cues, future studies are needed to help clarify whether bumblebees truly use active coordination.


Asunto(s)
Conducta Cooperativa , Animales , Abejas/fisiología , Conducta Social , Conducta Animal , Recompensa
7.
PLoS One ; 19(5): e0289455, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38696479

RESUMEN

BACKGROUND: Studies have confirmed that osteoporosis has been considered as one of the complications of diabetes, and the health hazards to patients are more obvious. This study is mainly based on the Taiwan National Health Insurance Database (TNHID). Through the analysis of TNHID, it is shown that the combined treatment of traditional Chinese medicine (TCM) medicine in patients of diabetes with osteoporosis (T2DOP) with lower related risks. METHODS: According to the study design, 3131 patients selected from TNHID who received TCM treatment were matched by 1-fold propensity score according to gender, age, and inclusion date as the control group. Cox proportional hazards analyzes were performed to compare fracture surgery, hospitalization, and all-cause mortality during a mean follow-up from 2000 to 2015. RESULTS: A total of 1055/1469/715 subjects (16.85%/23.46%/11.42%) had fracture surgery/inpatient/all-cause mortality of which 433/624/318 (13.83%/19.93%/10.16%) were in the TCM group) and 622/845/397 (19.87%/26.99%/12.68%) in the control group. Cox proportional hazards regression analysis showed that subjects in the TCM group had lower rates of fracture surgery, inpatient and all-cause mortality (adjusted HR = 0.467; 95% CI = 0.225-0.680, P<0.001; adjusted HR = 0.556; 95% CI = 0.330-0.751, P<0.001; adjusted HR = 0.704; 95% CI = 0.476-0.923, P = 0.012). Kaplan-Meier analysis showed that the cumulative risk of fracture surgery, inpatient and all-cause mortality was significantly different between the case and control groups (all log-rank p<0.001). CONCLUSION: This study provides longitudinal evidence through a cohort study of the value of integrated TCM for T2DOP. More research is needed to fully understand the clinical significance of these results.


Asunto(s)
Hospitalización , Medicina Tradicional China , Osteoporosis , Humanos , Femenino , Masculino , Osteoporosis/mortalidad , Osteoporosis/complicaciones , Anciano , Hospitalización/estadística & datos numéricos , Persona de Mediana Edad , Taiwán/epidemiología , Fracturas Óseas/mortalidad , Fracturas Óseas/cirugía , Modelos de Riesgos Proporcionales , Anciano de 80 o más Años
8.
Am J Sports Med ; : 3635465241247288, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38702986

RESUMEN

BACKGROUND: The tendon-bone interface (TBI) in the rotator cuff has a poor intrinsic capacity for healing, which increases the risk of retear after rotator cuff repair (RCR). However, facilitating regeneration of the TBI still remains a great clinical challenge. Herein, the authors established a novel strategy based on magnetic seeding to enhance the TBI regeneration. HYPOTHESIS: Magnetic seeding bone marrow mesenchymal stem cells labeled with superparamagnetic iron oxide (SPIO-BMSCs) into a biphasic scaffold can promote tendon-bone healing after RCR. STUDY DESIGN: Controlled laboratory study. METHODS: BMSCs were labeled with SPIOs. Prussian blue staining, CCK-8 tests, Western blot, and quantitative reverse transcription polymerase chain reaction (PCR) were used to determine the optimal effect concentration of SPIOs on cell bioactivities and abilities. Then SPIO-BMSCs were magnetically seeded into a biphasic scaffold under a magnetic field. The seeding efficacy was assessed by a scanning electron microscope, and the potential mechanism in chondrogenic differentiation after seeding SPIO-BMSCs into the scaffold was evaluated by Western blot and PCR. Furthermore, the effect of SPIO-BMSC/biphasic scaffold on tendon-bone healing after RCR using a rat model was examined using histological analysis, enzyme-linked immunosorbent assay, and biomechanical evaluation. RESULTS: BMSCs labeled with 100 µg/mL SPIO had no effect on cell bioactivities and the ability of chondrogenic differentiation. SPIO-BMSCs were magnetically seeded into a biphasic scaffold, which offered a high seeding efficacy to enhance chondrogenic differentiation of SPIO-BMSCs via the CDR1as/miR-7/FGF2 pathway for TBI formation in vitro. Furthermore, in vivo application of the biphasic scaffold with magnetically seeded SPIO-BMSCs showed their regenerative potential, indicating that they could significantly accelerate and promote TBI healing with superior biomechanical properties after RCR in a rat rotator cuff tear model. CONCLUSION: Magnetically seeding SPIO-BMSCs into a biphasic scaffold enhanced seeding efficacy to promote cell distribution and condensation. This construct enhanced the chondrogenesis process via the CDR1as/miR-7/FGF2 pathway and further promoted tendon-bone healing after RCR in a rat rotator cuff tear model. CLINICAL RELEVANCE: This study provides an alternative strategy for improving TBI healing after RCR.

9.
Nat Commun ; 15(1): 3772, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704373

RESUMEN

Developing skeletal editing tools is not a trivial task, and realizing the corresponding single-atom transmutation in a ring system without altering the ring size is even more challenging. Here, we introduce a skeletal editing strategy that enables polycyclic arenols, a highly prevalent motif in bioactive molecules, to be readily converted into N-heteroarenes through carbon-nitrogen transmutation. The reaction features selective nitrogen insertion into the C-C bond of the arenol frameworks by azidative dearomatization and aryl migration, followed by ring-opening, and ring-closing (ANRORC) to achieve carbon-to-nitrogen transmutation in the aromatic framework of the arenol. Using widely available arenols as N-heteroarene precursors, this alternative approach allows the streamlined assembly of complex polycyclic heteroaromatics with broad functional group tolerance. Finally, pertinent transformations of the products, including synthesis complex biheteroarene skeletons, were conducted and exhibited significant potential in materials chemistry.

10.
Haematologica ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695130

RESUMEN

Venous Thromboembolism (VTE) is a complex disease that can be classified into two subtypes: Deep Vein Thrombosis (DVT) and Pulmonary Embolism (PE). Previous observational studies have shown associations between lipids and VTE, but causality remains unclear. Hence, by utilizing 241 lipid-related traits as exposures and data from the FinnGen consortium on VTE, DVT, and PE as outcomes, we conducted two-sample Mendelian randomization (MR) analysis to investigate causal relationships between lipids and VTE, DVT and PE. The MR results identified that fatty acid (FA) unsaturation traits (Ratio of bis-allylic bonds to double bonds in lipids, and Ratio of bis-allylic bonds to total fatty acids in lipids) were associated with VTE (OR [95% CI]: 1.21 [1.15-1.27]; 1.21 [1.13-1.30]), DVT (OR [95%CI]: 1.24 [1.16-1.33]; 1.26 [1.16-1.36]) and PE (OR [95%CI]: 1.18 [1.08-1.29]; 1.18 [1.09-1.27]). Phosphatidylcholines exhibit potential causal effects on VTE and PE. Phosphatidylcholine acyl-alkyl C40:4 (PC ae C40:4) was negatively associated with VTE (OR [95% CI]: 0.79 [0.73-0.86]), while phosphatidylcholine diacyl C42:6 (PC aa C42:6) and phosphatidylcholine acyl-alkyl C36:4 (PC ae C36:4) were positively associated with PE (OR [95%CI]: 1.44 [1.20-1.72]; 1.22 [1.10-1.35]). Additionally, we found that medium LDL had a protective effect on VTE. Our study indicates that higher FA unsaturation may increase the risk of VTE, DVT, and PE. Different types of phosphatidylcholine have either promotive or inhibitory effects on VTE and PE, contributing to a better understanding of the risk factors for VTE.

11.
Front Immunol ; 15: 1267624, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38690286

RESUMEN

Inflammatory cytokines have crucial roles in the pathogenesis of tuberculosis (TB), and interleukin (IL)-27 and IL-35 have a pro-inflammatory and anti-inflammatory effect on many diseases, including infectious diseases. Therefore, we evaluated the relationship between IL-27 and IL-35 gene polymorphism, expression levels, and pulmonary TB (PTB) susceptibility. Nine single-nucleotide polymorphisms (SNPs) in the IL-27 gene (rs181206, rs153109, and rs17855750) and the IL-35 gene (rs4740, rs428253, rs9807813, rs2243123, rs2243135, and rs568408) were genotyped by the SNPscan technique in 497 patients with PTB and 501 controls. There was no significant difference regarding the genotype and allele frequencies of the above SNPs in the IL-27 and IL-35 genes between patients with PTB and controls. Haplotype analysis showed that the frequency of the GAC haplotype in the IL-35 gene was significantly decreased in patients with PTB when compared to controls (p = 0.036). Stratified analysis suggested that the frequency of the IL-27 rs17855750 GG genotype was significantly increased in patients with PTB with fever. Moreover, the lower frequency of the IL-35 rs568408 GA genotype was associated with drug-induced liver injury in patients with PTB. The IL-35 rs428253 GC genotype, as well as the rs4740 AA genotype and A allele, showed significant relationships with hypoproteinemia in patients with PTB. When compared with controls, the IL-27 level was significantly increased in patients with PTB. Taken together, IL-35 gene variation might contribute to a protective role on the susceptibility to PTB, and IL-27 and IL-35 gene polymorphisms were associated with several clinical manifestations of patients with PTB.


Asunto(s)
Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Interleucinas , Polimorfismo de Nucleótido Simple , Tuberculosis Pulmonar , Humanos , Interleucinas/genética , Masculino , Femenino , Tuberculosis Pulmonar/genética , Adulto , Persona de Mediana Edad , Genotipo , Haplotipos , Estudios de Casos y Controles , Alelos , Interleucina-27/genética
12.
Small Methods ; : e2301778, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38741551

RESUMEN

With the rapid development and maturity of electrochemical CO2 conversion involving cathodic CO2 reduction reaction (CO2RR) and anodic oxygen evolution reaction (OER), conventional ex situ characterizations gradually fall behind in detecting real-time products distribution, tracking intermediates, and monitoring structural evolution, etc. Nevertheless, advanced in situ techniques, with intriguing merits like good reproducibility, facile operability, high sensitivity, and short response time, can realize in situ detection and recording of dynamic data, and observe materials structural evolution in real time. As an emerging visual technique, scanning electrochemical microscope (SECM) presents local electrochemical signals on various materials surface through capturing micro-current caused by reactants oxidation and reduction. Importantly, SECM holds particular potentials in visualizing reactive intermediates at active sites and obtaining instantaneous morphology evolution images to reveal the intrinsic reactivity of active sites. Therefore, this review focuses on SECM fundamentals and its specific applications toward CO2RR and OER, mainly including electrochemical behavior observation on local regions of various materials, target products and onset potentials identification in real-time, reaction pathways clarification, reaction kinetics exploration under steady-state conditions, electroactive materials screening and multi-techniques coupling for a joint utilization. This review undoubtedly provides a leading guidance to extend various SECM applications to other energy-related fields.

13.
Angew Chem Int Ed Engl ; : e202404213, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600431

RESUMEN

Electrocatalytic carbon dioxide/carbon monoxide reduction reaction (CO(2)RR) has emerged as a prospective and appealing strategy to realize carbon neutrality for manufacturing sustainable chemical products. Developing highly active electrocatalysts and stable devices has been demonstrated as effective approach to enhance the conversion efficiency of CO(2)RR. In order to rationally design electrocatalysts and devices, a comprehensive understanding of the intrinsic structure evolution within catalysts and micro-environment change around electrode interface, particularly under operation conditions, is indispensable. Synchrotron radiation has been recognized as a versatile characterization platform, garnering widespread attention owing to its high brightness, elevated flux, excellent directivity, strong polarization and exceptional stability. This review systematically introduces the applications of synchrotron radiation technologies classified by radiation sources with varying wavelengths in CO(2)RR. By virtue of in situ/operando synchrotron radiationanalytical techniques, we also summarize relevant dynamic evolution processes from electronic structure, atomic configuration, molecular adsorption, crystal lattice and devices, spanning scales from the angstrom to the micrometer. The merits and limitations of diverse synchrotron characterization techniques are summarized, and their applicable scenarios in CO(2)RR are further presented. On the basis of the state-of-the-art fourth-generation synchrotron facilities, a perspective for further deeper understanding of the CO(2)RR process using synchrotron radiation analytical techniques is proposed.

14.
Mol Nutr Food Res ; 68(9): e2300314, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38639304

RESUMEN

SCOPE: Among patients with diabetes, who have modified nutritional behavior and a higher risk of cardiovascular disease (CVD), the influence of ultraprocessed foods (UPFs) on CVD remains unknown. The study aims to evaluate the association between UPF intake and the risk of CVD among individuals with type 2 diabetes (T2D) and further examine the potential biological pathways linking the association. METHODS AND RESULTS: This study includes 5405 participants with T2D who provided at least one 24-h dietary recall from the UK Biobank study. In the fully adjusted models, a 10% increase in the proportion of UPFs is associated with higher hazards of overall CVD (hazard ratio [HR]: 1.10; 95% confidence interval [CI]: 1.04, 1.15), coronary heart disease (HR: 1.10; 95% CI: 1.04, 1.16), heart failure (HR: 1.14; 95% CI: 1.05, 1.25), but not stroke (HR: 1.01; 95% CI: 0.90, 1.12). Cystatin C, high-density lipoprotein cholesterol (HDL-C), apolipoprotein A, C-reactive protein, and body mass index collectively explain 26.9% (12.8%, 48.5%) of the association between UPF intake and the risk of overall CVD. CONCLUSION: Higher UPF intakes are associated with increased hazards of CVD among individuals with T2D, and the association is partly mediated through worsening biomarkers of renal function, lipid metabolism, inflammation, and body weight.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Alimentos Procesados , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/complicaciones , Dieta , Manipulación de Alimentos , Factores de Riesgo , Biobanco del Reino Unido , Reino Unido/epidemiología
15.
J Hazard Mater ; 471: 134439, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38677123

RESUMEN

Microcystins (MCs) have a significant influence on aquatic ecosystems, but little is known about their terrestrial fate and impact. Here, we investigated the fate of two MCs (MC-LR and MC-RR) in the soil-earthworm system, with consideration of their congener-specific impact on earthworm health, soil bacteria, and soil metabolome. Although MCs had little acute lethal effect on earthworms, they caused obvious growth inhibition and setae rupture. Relative to MC-RR, MC-LR exhibited higher bioaccumulation and the resulting dermal lesions and deformation of longitudinal muscles. While the incorporation of both MCs into soils stimulated pathogenic bacteria and depressed oxidative stress tolerant bacteria, the response among soil nitrification and glutathione metabolism differed between the two congeners. The dissipation kinetics of MCs obeyed the first-order model. Earthworms stimulated soil N-cycling enzyme activities, increased the abundance of MC-degrading bacteria, and promoted bacterial metabolic functions related to glutathione metabolism, xenobiotics biodegradation, and metabolism of amino acids that comprise MCs, which accelerated the dissipation of MC-LR and MC-RR by 227% and 82%, respectively. These results provide evidence of significant congener differences in the terrestrial fate and impact of MCs, which will enable a better understanding of their role in mediating soil functions and ecosystem services.


Asunto(s)
Microcistinas , Oligoquetos , Microbiología del Suelo , Contaminantes del Suelo , Animales , Oligoquetos/metabolismo , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/toxicidad , Microcistinas/metabolismo , Microcistinas/toxicidad , Suelo/química , Glutatión/metabolismo , Biodegradación Ambiental , Bacterias/metabolismo , Bioacumulación
17.
Neuron ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38653248

RESUMEN

White matter injury (WMI) causes oligodendrocyte precursor cell (OPC) differentiation arrest and functional deficits, with no effective therapies to date. Here, we report increased expression of growth hormone (GH) in the hypoxic neonatal mouse brain, a model of WMI. GH treatment during or post hypoxic exposure rescues hypoxia-induced hypomyelination and promotes functional recovery in adolescent mice. Single-cell sequencing reveals that Ghr mRNA expression is highly enriched in vascular cells. Cell-lineage labeling and tracing identify the GHR-expressing vascular cells as a subpopulation of pericytes. These cells display tip-cell-like morphology with kinetic polarized filopodia revealed by two-photon live imaging and seemingly direct blood vessel branching and bridging. Gain-of-function and loss-of-function experiments indicate that GHR signaling in pericytes is sufficient to modulate angiogenesis in neonatal brains, which enhances OPC differentiation and myelination indirectly. These findings demonstrate that targeting GHR and/or downstream effectors may represent a promising therapeutic strategy for WMI.

18.
ACS Appl Mater Interfaces ; 16(17): 22391-22402, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38647046

RESUMEN

Nowadays, flexible multifunctional composites are attracting much attention and are practically being used in various emerging electronic devices. However, most composites suffer from the disadvantages of high loadings of conductive fillers, complicated preparation processes, and low energy conversion efficiency. In this article, Caffeic acid-modified multiwalled carbon nanotubes (C-MWCNTs)/poly(3,4-ethylene dioxythiophene):polystyrene sulfonic acid (PEDOT:PSS)/polyimide (PI) composite films (CPFs) were prepared using a simple layer-by-layer deposition method. The "reinforced concrete" structure of the C-MWCNTs/PEDOT:PSS layer ensures high electrical conductivity of the film, while the PI layer provides excellent mechanical properties (72.69 MPa). The composite film exhibits excellent electrothermal response and thermal stability up to approximately 125 °C at 5 V. In addition, the good conductivity of the film provides its electromagnetic shielding effectiveness (32.69 dB). With these advantages, we expect that flexible CPFs will be widely utilized in wearable devices, electromagnetic interference (EMI) shielding applications, and thermal management of personal or electronic devices.

19.
Org Lett ; 26(17): 3661-3666, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38656155

RESUMEN

Considering the ubiquitous presence of pyridine moieties in pharmaceutical compounds, it holds immense value to develop practical and straightforward methodologies for accessing heterocyclic aromatic hydrocarbons. In recent years, N-alkoxypyridinium salts have emerged as convenient radical precursors, enabling the generation of the corresponding alkoxy radicals and pyridine through single-electron transfer. Herein, we present the first report on visible-light-mediated intermolecular alkoxypyridylation of alkenes employing N-alkoxylpyridinium salts as bifunctional reagents with an exceptionally low catalyst loading (0.5 mol %).

20.
Eur J Med Chem ; 271: 116417, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38688063

RESUMEN

Since synovial hypoxic microenvironment significantly promotes the pathological progress of rheumatoid arthritis (RA), hypoxia-inducible factor 1 (HIF-1) has been emerged as a promising target for the development of novel therapeutic agents for RA treatment. In this study, we designed and synthesized a series of diaryl substituted isoquinolin-1(2H)-one derivatives as HIF-1 signaling inhibitors using scaffold-hopping strategy. By modifying the substituents on N-atom and 6-position of isoquinolin-1-one, we discovered compound 17q with the most potent activities against HIF-1 (IC50 = 0.55 µM) in a hypoxia-reactive element (HRE) luciferase reporter assay. Further pharmacological studies revealed that 17q concentration-dependently blocked hypoxia-induced HIF-1α protein accumulation, reduced inflammation response, inhibited cellular invasiveness and promoted VHL-dependent HIF-1α degradation in human RA synovial cell line. Moreover, 17q improved the pathological injury of ankle joints, decreased angiogenesis and attenuated inflammation response in the adjuvant-induced arthritis (AIA) rat model, indicating the promising therapeutic potential of compound 17q as an effective HIF-1 inhibitor for RA therapy.


Asunto(s)
Artritis Reumatoide , Isoquinolinas , Transducción de Señal , Animales , Humanos , Masculino , Ratas , Antirreumáticos/farmacología , Antirreumáticos/química , Antirreumáticos/síntesis química , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología , Artritis Experimental/metabolismo , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Isoquinolinas/química , Isoquinolinas/farmacología , Isoquinolinas/síntesis química , Estructura Molecular , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Quinolonas/síntesis química , Quinolonas/química , Quinolonas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...