Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(13): e2119883119, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35312369

RESUMEN

SignificanceWe present a groundbreaking advance in completely nonprecious hydrogen fuel cell technologies achieving a record power density of 200 mW/cm2 with Ni@CNx anode and Co-Mn cathode. The 2-nm CNx coating weakens the O-binding energy, which effectively mitigates the undesirable surface oxidation during hydrogen oxidation reaction (HOR) polarization, leading to a stable fuel cell operation for Ni@CNx over 100 h at 200 mA/cm2, superior to a Ni nanoparticle counterpart. Ni@CNx exhibited a dramatically enhanced tolerance to CO relative to Pt/C, enabling the use of hydrogen gas with trace amounts of CO, critical for practical applications. The complete removal of precious metals in fuel cells lowers the catalyst cost to virtually negligible levels and marks a milestone for practical alkaline fuel cells.

2.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 38(2): 117-122, 2021 Feb 10.
Artículo en Chino | MEDLINE | ID: mdl-33565061

RESUMEN

OBJECTIVE: To compare the mRNA level of cell proliferation-related genes Twist1, SIRT1, FGF2 and TGF-ß3 in placenta mesenchymal stem cells (PA-MSCs), umbilical cord mensenchymals (UC-MSCs) and dental pulp mesenchymal stem cells (DP-MSCs). METHODS: The morphology of various passages of PA-MSCs, UC-MSCs and DP-MSCs were observed by microscopy. Proliferation and promoting ability of the three cell lines were detected with the MTT method. Real-time PCR (RT-PCR) was used to determine the mRNA levels of Twist1, SIRT1, FGF2, TGF-ß3. RESULTS: The morphology of UC-MSCs and DP-MSCs was different from that of PA-MSCs. Proliferation ability and promoting ability of the PA-MSCs was superior to that of UC-MSCs and DP-MSCs. In PA-MSCs, expression level of Twist1 and TGF-ß3 was the highest and FGF2 was the lowest. SIRT1 was highly expressed in UC-MSCs. With the cell subcultured, different expression levels of Twist1, SIRT1, FGF2, TGF-ß3 was observed in PA-MSCs, UC-MSCs and DP-MSCs. CONCLUSION: Up-regulated expression of the Twist1, SIRT1 and TGF-ß3 genes can promote proliferation of PA-MSCs, UC-MSCs and DP-MSCs, whilst TGF-ß3 may inhibit these. The regulatory effect of Twist1, SIRT1, FGF2 and TGF-ß3 genes on PA-MSCs, UC-MSCs and DP-MSCs are different.


Asunto(s)
Proliferación Celular/genética , Factor 2 de Crecimiento de Fibroblastos/genética , Células Madre Mesenquimatosas/citología , Proteínas Nucleares/genética , Sirtuina 1/genética , Factor de Crecimiento Transformador beta3/genética , Proteína 1 Relacionada con Twist/genética , Diferenciación Celular , Células Cultivadas , Pulpa Dental/citología , Femenino , Humanos , Placenta/citología , Embarazo , Cordón Umbilical/citología
3.
ACS Appl Mater Interfaces ; 12(28): 31575-31581, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32551482

RESUMEN

Increasing the antioxidation capability of Ni for the hydrogen oxidation reaction (HOR) is considered important and challenging for alkaline polymer electrolyte fuel cells (APEFCs). Herein, we report a series of Ni-core carbon-shell (Ni@C) catalysts obtained by a vacuum pyrolysis method treated at different temperatures. According to the cyclic voltammetry tests and the HOR tests, Ni@C treated at 500 °C exhibits a much higher Ni core utilization and better catalytic activity toward HOR than the commonly used Ni/C catalyst. Furthermore, X-ray photoelectron spectroscopy characterization shows that a higher percentage of Ni0 appears at the surface of the Ni core of Ni@C than the Ni/C catalyst. The accelerated durability tests, as well as the chronoamperometry tests, suggest that the antioxidation capability of Ni has been obviously improved by the carbon shells. The Raman spectra show that the graphitization degree of the carbon shells might be the key factor affecting the Ni utilization and the HOR catalytic activity of the Ni@C catalysts. The APEFC achieves a peak power density of 160 mW/cm2 using Ni@C-500 °C as the anode, which could also stably discharge for 120 h at 0.7 V.

4.
Angew Chem Int Ed Engl ; 58(5): 1442-1446, 2019 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-30548378

RESUMEN

The Pt-catalyzed hydrogen oxidation reaction (HOR) for alkaline polymer electrolyte fuel cells (APEFCs) has been one of the focus subjects in current fuel-cell research. The Pt catalyst is inferior for HOR in alkaline solutions, and alloying with Ru is an effective promotion strategy. APEFCs with Pt-Ru anodes have provided a performance benchmark over 1 W cm-2 at 60 °C. The Pt anode is now found to be in fact as good as the Pt-Ru anode for APEFCs operated at elevated conditions. At 80 °C with appropriate gas back-pressure, the cell with a Pt anode exhibits a peak power density of about 1.9 W cm-2 , which is very close to that with a Pt-Ru anode. Even by decreasing the anode Pt loading to 0.1 mg cm-2 , over 1.5 W cm-2 can still be achieved at 80 °C. This finding alters the previous understanding about the Pt catalyzed HOR in alkaline media and casts a new light on the development of practical and high-power APFEC technology.

5.
ACS Appl Mater Interfaces ; 10(39): 33581-33588, 2018 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-30198705

RESUMEN

Alkaline polymer electrolyte fuel cells (APEFCs) are a new class of electrochemical devices that intrinsically enable the use of nonprecious metal catalysts. As an important component of APEFCs, alkaline polymer electrolytes (APEs) have been a research focus in recent decades. To minimize the ohmic loss and to facilitate the water transport, the APE membrane should be as thin as possible, which generally requires a trade-off between the ionic conductivity and the mechanical robustness/dimensional stability of the membrane. Here, we report a new reinforced APE membrane that can effectively disentangle such a trade-off. The quaternary ammonia poly(ether ether ketone) (QAPEEK) membrane is highly conductive but suffers from the overuptake of water, which leads to significant membrane swelling and weak mechanical strength. Upon reinforcing with sulfonated nanobamboo fiber (s-NBF), the swelling degree decreases from 27.5 to 7.5% in 80 °C water. The thickness of such an s-NBF/QAPEEK membrane can then be reduced to 15 µm, which diminishes the electrical resistance, very suitable for APEFC applications.

6.
ACS Appl Mater Interfaces ; 7(4): 2809-16, 2015 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-25594224

RESUMEN

Aromatic ether-based alkaline polymer electrolytes (APEs) are one of the most popular types of APEs being used in fuel cells. However, recent studies have demonstrated that upon being grafted by proximal cations some polar groups in the backbone of such APEs can be attacked by OH(-), leading to backbone degradation in an alkaline environment. To resolve this issue, we performed a systematic study on six APEs. We first replaced the polysulfone (PS) backbone with polyphenylsulfone (PPSU) and polyphenylether (PPO), whose molecular structures contain fewer polar groups. Although improved stability was seen after this change, cation-induced degradation was still obvious. Thus, our second move was to replace the ordinary quaternary ammonia (QA) cation, which had been closely attached to the polymer backbone, with a pendant-type QA (pQA), which was linked to the backbone through a long side chain. After a stability test in a 1 mol/L KOH solution at 80 °C for 30 days, all pQA-type APEs (pQAPS, pQAPPSU, and pQAPPO) exhibited as low as 8 wt % weight loss, which is close to the level of the bare backbone (5 wt %) and remarkably lower than those of the QA-type APEs (QAPS, QAPPSU, and QAPPO), whose weight losses under the same conditions were >30%. The pQA-type APEs also possessed clear microphase segregation morphology, which led to ionic conductivities that were higher, and water uptakes and degrees of membrane swelling that were lower, than those of the QA-type APEs. These observations unambiguously indicate that designing pendant-type cations is an effective approach to increasing the chemical stability of aromatic ether-based APEs.

7.
J Am Chem Soc ; 136(13): 5057-64, 2014 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-24564649

RESUMEN

A facile and efficient self-sorting assemble (CSA) strategy has been paved for bottom-up construction of the 3-fold symmetrical and highly substituted hexa-cata-hexabenzocoronenes (c-HBCs), the trithieno analogues, and larger disc-shaped PAHs from simple chemicals using benzylic carbons as tenon joints and a novel FeCl3-mediated AAA process as a key step. The structures of the as-prepared c-HBCs and related NGs were clearly identified by spectral analyses and X-ray crystallographic studies. Moreover, these can be envisaged to serve as new launching platforms for the construction of larger and more complex π-conjugated molecules and supramolecular architectures because of the modifiable and symmetrical decorations.

8.
ACS Appl Mater Interfaces ; 5(24): 13405-11, 2013 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-24229363

RESUMEN

Alkaline polymer electrolyte fuel cells (APEFCs) promise the use of nonprecious metal catalysts and thus have attracted much research attention in the recent decade. Among the challenges of developing practical APEFC technology, the chemical stability of alkaline polymer electrolytes (APEs) seems to be rather difficult. Research found that, upon attachment of a cationic functional group, an originally stable polymer backbone, such as polysulfone (PSF), would degrade in an alkaline environment. In the present work, we try to employ poly(ether ether ketone) (PEEK), a very inert engineering plastic, as the backbone of APEs. The PEEK is functionalized with both a sulfonic acid (SA) group and a quaternary ammonia (QA) group, with the latter as the majority amount. Ionic cross-linking between SA and QA has rendered the thus-obtained membrane (xQAPEEK) with high mechanical strength and low swelling degree. More importantly, the xQAPEEK membrane exhibits outstanding stability in a 1 mol/L KOH solution at 80 °C for a test period of 30 days: the total weight loss of xQAPEEK is only 6 wt %, in comparison to a large degradation of quaternary ammonia PSF (more than 40 wt %) under the same conditions. Our findings not only have demonstrated an effective approach to preparing PEEK-based APE but also cast a new light on the development of highly stable APEs for fuel-cell application.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...