Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 135, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38478096

RESUMEN

Parkinson's disease (PD) is a motor disorder resulting from dopaminergic neuron degeneration in the substantia nigra caused by age, genetics, and environment. The disease severely impacts a patient's quality of life and can even be life-threatening. The hyperpolarization-activated cyclic nucleotide-gated (HCN) channel is a member of the HCN1-4 gene family and is widely expressed in basal ganglia nuclei. The hyperpolarization-activated current mediated by the HCN channel has a distinct impact on neuronal excitability and rhythmic activity associated with PD pathogenesis, as it affects the firing activity, including both firing rate and firing pattern, of neurons in the basal ganglia nuclei. This review aims to comprehensively understand the characteristics of HCN channels by summarizing their regulatory role in neuronal firing activity of the basal ganglia nuclei. Furthermore, the distribution and characteristics of HCN channels in each nucleus of the basal ganglia group and their effect on PD symptoms through modulating neuronal electrical activity are discussed. Since the roles of the substantia nigra pars compacta and reticulata, as well as globus pallidus externus and internus, are distinct in the basal ganglia circuit, they are individually described. Lastly, this investigation briefly highlights that the HCN channel expressed on microglia plays a role in the pathological process of PD by affecting the neuroinflammatory response.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Calidad de Vida , Ganglios Basales/fisiología , Sustancia Negra
2.
Proc Natl Acad Sci U S A ; 120(17): e2216247120, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37068253

RESUMEN

In Parkinson's disease (PD), reduced dopamine levels in the basal ganglia have been associated with altered neuronal firing and motor dysfunction. It remains unclear whether the altered firing rate or pattern of basal ganglia neurons leads to parkinsonism-associated motor dysfunction. In the present study, we show that increased histaminergic innervation of the entopeduncular nucleus (EPN) in the mouse model of PD leads to activation of EPN parvalbumin (PV) neurons projecting to the thalamic motor nucleus via hyperpolarization-activated cyclic nucleotide-gated (HCN) channels coupled to postsynaptic H2R. Simultaneously, this effect is negatively regulated by presynaptic H3R activation in subthalamic nucleus (STN) glutamatergic neurons projecting to the EPN. Notably, the activation of both types of receptors ameliorates parkinsonism-associated motor dysfunction. Pharmacological activation of H2R or genetic upregulation of HCN2 in EPNPV neurons, which reduce neuronal burst firing, ameliorates parkinsonism-associated motor dysfunction independent of changes in the neuronal firing rate. In addition, optogenetic inhibition of EPNPV neurons and pharmacological activation or genetic upregulation of H3R in EPN-projecting STNGlu neurons ameliorate parkinsonism-associated motor dysfunction by reducing the firing rate rather than altering the firing pattern of EPNPV neurons. Thus, although a reduced firing rate and more regular firing pattern of EPNPV neurons correlate with amelioration in parkinsonism-associated motor dysfunction, the firing pattern appears to be more critical in this context. These results also confirm that targeting H2R and its downstream HCN2 channel in EPNPV neurons and H3R in EPN-projecting STNGlu neurons may represent potential therapeutic strategies for the clinical treatment of parkinsonism-associated motor dysfunction.


Asunto(s)
Enfermedad de Parkinson , Trastornos Parkinsonianos , Núcleo Subtalámico , Ratones , Animales , Núcleo Entopeduncular , Tálamo , Trastornos Parkinsonianos/terapia , Receptores Histamínicos
3.
Mol Neurobiol ; 60(1): 183-202, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36245064

RESUMEN

The dorsolateral striatum (DLS) is the critical neural substrate that plays a role in motor control and motor learning. Our past study revealed a direct histaminergic projection from the tuberomammillary nucleus (TMN) of the hypothalamus to the rat striatum. However, the afferent of histaminergic fibers in the mouse DLS, the effect of histamine on DLS neurons, and the underlying receptor and ionic mechanisms remain unclear. Here, we demonstrated a direct histaminergic innervation from the TMN in the mouse DLS, and histamine excited both the direct-pathway spiny projection neurons (d-SPNs) and the indirect-pathway spiny projection neurons (i-SPNs) of DLS via activation of postsynaptic H1R and H2R, albeit activation of presynaptic H3R suppressed neuronal activity by inhibiting glutamatergic synaptic transmission on d-SPNs and i-SPNs in DLS. Moreover, sodium-calcium exchanger 3 (NCX3), potassium-leak channels linked to H1R, and hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) coupled to H2R co-mediated the excitatory effect induced by histamine on d-SPNs and i-SPNs in DLS. These results demonstrated the pre- and postsynaptic receptors and their downstream multiple ionic mechanisms underlying the inhibitory and excitatory effects of histamine on d-SPNs and i-SPNs in DLS, suggesting a potential modulatory effect of the central histaminergic system on the DLS as well as its related motor control and motor learning.


Asunto(s)
Histamina , Neuronas , Animales , Ratones , Cuerpo Estriado/metabolismo , Histamina/farmacología , Neuronas/metabolismo , Canales de Potasio , Receptores Histamínicos H1/metabolismo , Transmisión Sináptica
4.
Br J Pharmacol ; 180(10): 1379-1407, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36512485

RESUMEN

BACKGROUND AND PURPOSE: Parvalbumin (PV)-positive neurons are a type of neuron in the lateral globus pallidus (LGP) which plays an important role in motor control. The present study investigated the effect of histamine on LGPPV neurons and motor behaviour. EXPERIMENTAL APPROACH: Histamine levels in LGP as well as its histaminergic innervation were determined through brain stimulation, microdialysis, anterograde tracing and immunostaining. Mechanisms of histamine action were detected by immunostaining, single-cell qPCR, whole-cell patch-clamp recording, optogenetic stimulation and CRISPR/Cas9 gene-editing techniques. The effect of histamine on motor behaviour was detected by animal behavioural tests. KEY RESULTS: A direct histaminergic innervation in LGP from the tuberomammillary nucleus (TMN) and a histamine-induced increase in the intrinsic excitability of LGPPV neurons were determined by pharmacological blockade or by genetic knockout of the histamine H1 receptor (H1 R)-coupled TWIK-related potassium channel-1 (TREK-1) and the small-conductance calcium-activated potassium channel (SK3), as well as by activation or overexpression of the histamine H2 receptor (H2 R)-coupled hyperpolarization-activated cyclic nucleotide-gated channel (HCN2). Histamine negatively regulated the STN → LGPGlu transmission in LGPPV neurons via the histamine H3 receptor (H3 R), whereas blockage or knockout of H3 R increased the intrinsic excitability of LGPPV neurons. CONCLUSIONS AND IMPLICATIONS: Our results indicated that the endogenous histaminergic innervation in the LGP can bidirectionally promote motor control by increasing the intrinsic excitability of LGPPV neurons through postsynaptic H1 R and H2 R, albeit its action was negatively regulated by the presynaptic H3 R, thereby suggesting possible role of histamine in motor deficits manifested in Parkinson's disease (PD).


Asunto(s)
Histamina , Parvalbúminas , Animales , Globo Pálido/metabolismo , Neuronas , Receptores Histamínicos , Receptores Histamínicos H2/genética , Receptores Histamínicos H2/metabolismo
5.
Front Immunol ; 13: 995432, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36225918

RESUMEN

Parasitic helminth infections remain a significant global health issue and are responsible for devastating morbidity and economic hardships. During infection, helminths migrate through different host organs, which results in substantial tissue damage and the release of diverse effector molecules by both hematopoietic and non-hematopoietic cells. Thus, host protective responses to helminths must initiate mechanisms that help to promote worm clearance while simultaneously mitigating tissue injury. The specialized immunity that promotes these responses is termed type 2 inflammation and is initiated by the recruitment and activation of hematopoietic stem/progenitor cells, mast cells, basophils, eosinophils, dendritic cells, neutrophils, macrophages, myeloid-derived suppressor cells, and group 2 innate lymphoid cells. Recent work has also revealed the importance of neuron-derived signals in regulating type 2 inflammation and antihelminth immunity. These studies suggest that multiple body systems coordinate to promote optimal outcomes post-infection. In this review, we will describe the innate immune events that direct the scope and intensity of antihelminth immunity. Further, we will highlight the recent progress made in our understanding of the neuro-immune interactions that regulate these pathways and discuss the conceptual advances they promote.


Asunto(s)
Helmintiasis , Helmintos , Animales , Inmunidad Innata , Inflamación , Linfocitos
6.
Proc Natl Acad Sci U S A ; 119(37): e2201645119, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36070344

RESUMEN

Neuroimmune interactions are crucial for regulating immunity and inflammation. Recent studies have revealed that the central nervous system (CNS) senses peripheral inflammation and responds by releasing molecules that limit immune cell activation, thereby promoting tolerance and tissue integrity. However, the extent to which this is a bidirectional process, and whether peripheral immune cells also promote tolerance mechanisms in the CNS remains poorly defined. Here we report that helminth-induced type 2 inflammation promotes monocyte responses in the brain that are required to inhibit excessive microglial activation and host death. Mechanistically, infection-induced monocytes express YM1 that is sufficient to inhibit tumor necrosis factor production from activated microglia. Importantly, neuroprotective monocytes persist in the brain, and infected mice are protected from subsequent lipopolysaccharide-induced neuroinflammation months after infection-induced inflammation has resolved. These studies demonstrate that infiltrating monocytes promote CNS homeostasis in response to inflammation in the periphery and demonstrate that a peripheral infection can alter the immunologic landscape of the host brain.


Asunto(s)
Encéfalo , Encefalitis , Homeostasis , Monocitos , Neuroinmunomodulación , Trichinella spiralis , Triquinelosis , Animales , Encéfalo/inmunología , Encéfalo/parasitología , Encefalitis/inmunología , Encefalitis/parasitología , Homeostasis/inmunología , Lectinas/metabolismo , Ratones , Microglía/inmunología , Monocitos/inmunología , Trichinella spiralis/inmunología , Triquinelosis/inmunología , Triquinelosis/patología , beta-N-Acetilhexosaminidasas/metabolismo
7.
Semin Immunol ; 53: 101529, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-34815162

RESUMEN

It has been appreciated that basophilia is a common feature of helminth infections for approximately 50 years. The ability of basophils to secrete IL-4 and other type 2 cytokines has supported the prevailing notion that basophils contribute to antihelminth immunity by promoting optimal type 2 T helper (Th2) cell responses. While this appears to be the case in several helminth infections, emerging studies are also revealing that the effector functions of basophils are extremely diverse and parasite-specific. Further, new reports now suggest that basophils can restrict type 2 inflammation in a manner that preserves the integrity of helminth-affected tissue. Finally, exciting data has also demonstrated that basophils can regulate inflammation by participating in neuro-immune interactions. This article will review the current state of basophil biology and describe how recent studies are transforming our understanding of the role basophils play in the context of helminth infections.


Asunto(s)
Basófilos , Helmintos , Animales , Citocinas/metabolismo , Helmintos/metabolismo , Humanos , Inflamación , Células Th2
8.
Nat Commun ; 12(1): 2624, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976143

RESUMEN

The etiology of ulcerative colitis is poorly understood and is likely to involve perturbation of the complex interactions between the mucosal immune system and the commensal bacteria of the gut, with cytokines acting as important cross-regulators. Here we use IFN receptor-deficient mice in a dextran sulfate sodium (DSS) model of acute intestinal injury to study the contributions of type I and III interferons (IFN) to the initiation, progression and resolution of acute colitis. We find that mice lacking both types of IFN receptors exhibit enhanced barrier destruction, extensive loss of goblet cells and diminished proliferation of epithelial cells in the colon following DSS-induced damage. Impaired mucosal healing in double IFN receptor-deficient mice is driven by decreased amphiregulin expression, which IFN signaling can up-regulate in either the epithelial or hematopoietic compartment. Together, these data underscore the pleiotropic functions of IFNs and demonstrate that these critical antiviral cytokines also support epithelial regeneration following acute colonic injury.


Asunto(s)
Colitis Ulcerosa/inmunología , Interferones/metabolismo , Mucosa Intestinal/patología , Repitelización/inmunología , Animales , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/patología , Sulfato de Dextran/administración & dosificación , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Células Epiteliales , Femenino , Humanos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/inmunología , Masculino , Ratones , Ratones Noqueados , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , Receptores de Interferón/genética , Receptores de Interferón/metabolismo , Transducción de Señal/genética , Transducción de Señal/inmunología , Organismos Libres de Patógenos Específicos
10.
PLoS Pathog ; 12(4): e1005600, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-27128797

RESUMEN

Type I (IFN-α/ß) and type III (IFN-λ) interferons (IFNs) exert shared antiviral activities through distinct receptors. However, their relative importance for antiviral protection of different organ systems against specific viruses remains to be fully explored. We used mouse strains deficient in type-specific IFN signaling, STAT1 and Rag2 to dissect distinct and overlapping contributions of type I and type III IFNs to protection against homologous murine (EW-RV strain) and heterologous (non-murine) simian (RRV strain) rotavirus infections in suckling mice. Experiments demonstrated that murine EW-RV is insensitive to the action of both types of IFNs, and that timely viral clearance depends upon adaptive immune responses. In contrast, both type I and type III IFNs can control replication of the heterologous simian RRV in the gastrointestinal (GI) tract, and they cooperate to limit extra-intestinal simian RRV replication. Surprisingly, intestinal epithelial cells were sensitive to both IFN types in neonatal mice, although their responsiveness to type I, but not type III IFNs, diminished in adult mice, revealing an unexpected age-dependent change in specific contribution of type I versus type III IFNs to antiviral defenses in the GI tract. Transcriptional analysis revealed that intestinal antiviral responses to RV are triggered through either type of IFN receptor, and are greatly diminished when receptors for both IFN types are lacking. These results also demonstrate a murine host-specific resistance to IFN-mediated antiviral effects by murine EW-RV, but the retention of host efficacy through the cooperative action by type I and type III IFNs in restricting heterologous simian RRV growth and systemic replication in suckling mice. Collectively, our findings revealed a well-orchestrated spatial and temporal tuning of innate antiviral responses in the intestinal tract where two types of IFNs through distinct patterns of their expression and distinct but overlapping sets of target cells coordinately regulate antiviral defenses against heterologous or homologous rotaviruses with substantially different effectiveness.


Asunto(s)
Interferón Tipo I/inmunología , Interferón gamma/inmunología , Intestinos/inmunología , Infecciones por Rotavirus/inmunología , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Humanos , Immunoblotting , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena de la Polimerasa , Rotavirus
11.
J Neuroimmunol ; 286: 16-24, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26298320

RESUMEN

We investigated the role of intracerebroventricular (ICV) injection of rimonabant (500ng), a CB1 antagonist, on lipopolysaccharide ((LPS) 5mg/kg)-induced pulmonary inflammation in rats in an isolated perfused lung model. There were decreases in pulmonary capillary pressure (Ppc) and increases in the ((Wet-Dry)/Dry lung weight)/(Ppc) ratio in the ICV-vehicle/LPS group at 4h. There were decreases in TLR4 pathway markers, such as interleukin receptor-associated kinase-1, IκBα, Raf1 and phospho-SFK (Tyr416) at 30min and at 4h increases in IL-6, vascular cell adhesion molecule-1 and myeloperoxidase in lung homogenate. Intracerebroventricular rimonabant attenuated these LPS-induced responses, indicating that ICV rimonabant modulates LPS-initiated pulmonary inflammation.


Asunto(s)
Antiinflamatorios/administración & dosificación , Inyecciones Intraventriculares , Piperidinas/administración & dosificación , Neumonía/prevención & control , Pirazoles/administración & dosificación , Animales , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Vías de Administración de Medicamentos , Esquema de Medicación , Lipopolisacáridos/toxicidad , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Masculino , Peroxidasa/metabolismo , Neumonía/inducido químicamente , Edema Pulmonar/inducido químicamente , Edema Pulmonar/prevención & control , Ratas , Ratas Sprague-Dawley , Rimonabant , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Receptor Toll-Like 4/metabolismo
12.
J Neuroimmunol ; 285: 94-100, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26198924

RESUMEN

This study tested the hypothesis that lipopolysaccharide (LPS) lowers arterial pressure through two different mechanisms depending on the dose. Previously, we found that a low hypotensive dose of LPS (1mg/kg) lowers arterial pressure by activating vagus nerve afferents. Here we report that hypotension evoked by high dose LPS (15mg/kg) can be prevented by injecting lidocaine into the OVLT but not by vagotomy or inactivation of the NTS. The hypotension produced by both LPS doses was correlated with elevated extracellular norepinephrine concentrations in the POA and prevented by blocking alpha-adrenergic receptors. Thus, initiation of endotoxic hypotension is dose-related, mechanistically.


Asunto(s)
Presión Arterial/fisiología , Endotoxemia/fisiopatología , Hipotensión/fisiopatología , Lipopolisacáridos/administración & dosificación , Lipopolisacáridos/toxicidad , Organum Vasculosum/fisiología , Animales , Presión Arterial/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Endotoxemia/inducido químicamente , Hipotensión/inducido químicamente , Masculino , Organum Vasculosum/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
13.
J Asian Nat Prod Res ; 13(11): 993-1002, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22007630

RESUMEN

Gamboge is a dry resin secreted from Garcinia hanburryi, and gambogenic acid (GNA) is one of the main active compounds of gamboge. We have previously demonstrated the anticancer activity of GNA in A549 cells and pointed out its potential effects in anticancer therapies. Previous studies reported that GNA induced apoptosis in many cancer cell lines and inhibited A549 tumor growth in xenograft of nude mice in vivo. However, the anticancer mechanism of GNA has still not been well studied. In this paper, we have investigated whether GNA-induced apoptosis is critically mediated by the p38 mitogen-activated protein kinase (MAPK) pathway. Our findings revealed that GNA could induce apoptosis, inhibit proliferation, down-regulate the expression of p38 and MAPK, increase the activations of caspase-9, caspase-3, and cytochrome c release. Furthermore, using SB203580, an adenosine triphosphate-competitive inhibitor of p38 MAPK, inhibit the expression of p-p38 and the experimental results show that it may promote the occurrence of apoptosis induced by GNA. Taken together, these results suggested that up-regulation of the p38 MAPK cascade may account for the activation of GNA-induced apoptosis.


Asunto(s)
Garcinia/química , Imidazoles/farmacología , Piridinas/farmacología , Terpenos/farmacología , Xantonas/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Citocromos c/metabolismo , Humanos , Ratones , Estructura Molecular , Terpenos/química , Regulación hacia Arriba/efectos de los fármacos , Xantenos , Xantonas/química , Proteínas Quinasas p38 Activadas por Mitógenos/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...