Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Natl Sci Rev ; 11(5): nwae062, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38628571

RESUMEN

The limited lifespan of batteries is a challenge in the application of implantable electronic devices. Existing wireless power technologies such as ultrasound, near-infrared light and magnetic fields cannot charge devices implanted in deep tissues, resulting in energy attenuation through tissues and thermal generation. Herein, an ultra-low frequency magnetic energy focusing (ULFMEF) methodology was developed for the highly effective wireless powering of deep-tissue implantable devices. A portable transmitter was used to output the low-frequency magnetic field (<50 Hz), which remotely drives the synchronous rotation of a magnetic core integrated within the pellet-like implantable device, generating an internal rotating magnetic field to induce wireless electricity on the coupled coils of the device. The ULFMEF can achieve energy transfer across thick tissues (up to 20 cm) with excellent transferred power (4-15 mW) and non-heat effects in tissues, which is remarkably superior to existing wireless powering technologies. The ULFMEF is demonstrated to wirelessly power implantable micro-LED devices for optogenetic neuromodulation, and wirelessly charged an implantable battery for programmable electrical stimulation on the sciatic nerve. It also bypassed thick and tough protective shells to power the implanted devices. The ULFMEF thus offers a highly advanced methodology for the generation of wireless powered biodevices.

2.
Nat Commun ; 14(1): 4428, 2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37481621

RESUMEN

Soft electromagnetic devices have great potential in soft robotics and biomedical applications. However, existing soft-magneto-electrical devices would have limited hybrid functions and suffer from damaging stress concentrations, delamination or material leakage. Here, we report a hybrid magnetic-mechanical-electrical (MME) core-sheath fiber to overcome these challenges. Assisted by the coaxial printing method, the MME fiber can be printed into complex 2D/3D MME structures with integrated magnetoactive and conductive properties, further enabling hybrid functions including programmable magnetization, somatosensory, and magnetic actuation along with simultaneous wireless energy transfer. To demonstrate the great potential of MME devices, precise and minimally invasive electro-ablation was performed with a flexible MME catheter with magnetic control, hybrid actuation-sensing was performed by a durable somatosensory MME gripper, and hybrid wireless energy transmission and magnetic actuation were demonstrated by an untethered soft MME robot. Our work thus provides a material design strategy for soft electromagnetic devices with unexplored hybrid functions.

3.
ACS Sens ; 8(3): 1241-1251, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36821704

RESUMEN

Continuous glucose monitoring (CGM) can mini-invasively track blood glucose fluctuation and reduce the risk of hyperglycemia and hypoglycemia, and this is is in great demand for diabetes management. However, cost-effective manufacture of CGM systems with continuously improved convenience and performance is still the persistent goal. Herein, we developed a smartphone-controlled and microneedle (MN)-based wearable CGM system for long-term glucose monitoring. The CGM system modified with a sandwich-type enzyme immobilization strategy can satisfy the clinical requirement of interstitial fluid (ISF) glucose monitoring for 14 days with a mean absolute relative difference of 10.2% and a cost of less than $15, which correlated well with the commercial glucometer and FDA-approved CGM system FreeStyle Libre (Abbott Inc., Illinois, USA). The self-developed CGM system is demonstrated to accurately monitor glucose fluctuations and provide abundant clinical information. It is better to find the cause of individual blood glucose changes and beneficial for the guide of precise glucose control. On the whole, the intelligently wearable CGM system may provide an alternative solution for home-care diabetes management.


Asunto(s)
Diabetes Mellitus Tipo 1 , Dispositivos Electrónicos Vestibles , Humanos , Glucemia , Automonitorización de la Glucosa Sanguínea , Teléfono Inteligente , Glucosa
4.
Nat Commun ; 13(1): 4177, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35853940

RESUMEN

Soft magneto-active machines capable of magnetically controllable shape-morphing and locomotion have diverse promising applications such as untethered biomedical robots. However, existing soft magneto-active machines often have simple structures with limited functionalities and do not grant high-throughput production due to the convoluted fabrication technology. Here, we propose a facile fabrication strategy that transforms 2D magnetic sheets into 3D soft magneto-active machines with customized geometries by incorporating origami folding. Based on automated roll-to-roll processing, this approach allows for the high-throughput fabrication of soft magneto-origami machines with a variety of characteristics, including large-magnitude deploying, sequential folding into predesigned shapes, and multivariant actuation modes (e.g., contraction, bending, rotation, and rolling locomotion). We leverage these abilities to demonstrate a few potential applications: an electronic robot capable of on-demand deploying and wireless charging, a mechanical 8-3 encoder, a quadruped robot for cargo-release tasks, and a magneto-origami arts/craft. Our work contributes for the high-throughput fabrication of soft magneto-active machines with multi-functionalities.


Asunto(s)
Locomoción , Rotación
5.
Adv Sci (Weinh) ; 8(23): e2103182, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34693657

RESUMEN

Magnetically responsive structured surfaces enabling multifunctional droplet manipulation are of significant interest in both scientific and engineering research. To realize magnetic actuation, current strategies generally employ well-designed microarrays of high-aspect-ratio structure components (e.g., microcilia, micropillars, and microplates) with incorporated magnetism to allow reversible bending deformation driven by magnets. However, such magneto-responsive microarray surfaces suffer from highly restricted deformation range and poor control precision under magnetic field, restraining their droplet manipulation capability. Herein, a novel magneto-responsive shutter (MRS) design composed of arrayed microblades connected to a frame is developed for on-demand droplet manipulation. The microblades can perform two dynamical transformation operations, including reversible swing and rotation, and significantly, the transformation can be precisely controlled over a large rotation range with the highest rotation angle up to 3960°. Functionalized MRSs based on the above design, including Janus-MRS, superhydrophobic MRS (SHP-MRS) and lubricant infused slippery MRS (LIS-MRS), can realize a wide range of droplet manipulations, ranging from switchable wettability, directional droplet bounce, droplet distribution, and droplet merging, to continuous droplet transport along either straight or curved paths. MRS provides a new paradigm of using swing/rotation topographic transformation to replace conventional bending deformation for highly efficient and on-demand multimode droplet manipulation under magnetic actuation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...