Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2403743, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862115

RESUMEN

Semiconducting carbon nanotubes (CNTs) have been considered as the most promising channel material to construct ultra-scaled field-effect transistors (FETs), but the perfect sp2 C-C structure makes stable doping difficult, which limits the electrical designability of CNT devices. Here, an inner doping method was developed by filling CNTs with one-dimensional (1D) halide perovskites to form a coaxial heterojunction, which enables a stable n-type field-effect transistor (CNT-FET) for constructing complementary metal-oxide-semiconductor (CMOS) electronics. Most importantly, a quasi-broken gap (BG) heterojunction tunnel field-effect transistor (TFET) was first demonstrated based on an individual partial-filling CsPbBr3/CNT and exhibited a subthreshold swing of 35 mV dec-1 with a high on-state current of up to 4.9 µA/tube and an on/off current ratio of up to 105 at room temperature. The quasi-BG TFET based on the CsPbBr3/CNT coaxial heterojunction paves the way for constructing high-performance and ultralow power consumption ICs. This article is protected by copyright. All rights reserved.

2.
ACS Nano ; 18(11): 7868-7876, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38440979

RESUMEN

Diodes based on p-n junctions are fundamental building blocks for numerous circuits, including rectifiers, photovoltaic cells, light-emitting diodes (LEDs), and photodetectors. However, conventional doping techniques to form p- or n-type semiconductors introduce impurities that lead to Coulomb scattering. When it comes to low-dimensional materials, controllable and stable doping is challenging due to the feature of atomic thickness. Here, by selectively depositing dielectric layers of Y2O3 and AlN, direct formation of wafer-scale carbon-nanotube (CNT) diodes are demonstrated with high yield and spatial controllability. It is found that the oxygen interstitials in Y2O3, and the oxygen vacancy together with Al-Al bond in AlN/Y2O3 electrostatically modulate the intrinsic CNTs channel, which leads to p- and n-type conductance, respectively. These CNTs diodes exhibit a high rectification ratio (>104) and gate-tunable rectification behavior. Based on these results, we demonstrate the applicability of the diodes in electrostatic discharge (ESD) protection and photodetection.

3.
Sci Adv ; 10(12): eadl1636, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38517964

RESUMEN

Carbon nanotubes (CNTs), due to excellent electronic properties, are emerging as a promising semiconductor for diverse electronic applications with superiority over silicon. However, until now, the supposed superiority of CNTs by "head-to-head" comparison within a well-defined voltage range remains unrealized. Here, we report aligned CNT (ACNT)-based electronics on a glass wafer and successfully develop a 250-nm gate length ACNT-based field-effect transistor (FET) with an almost identical transfer curve to a "90-nm" node silicon device, indicating a three- to four-generation superiority. Moreover, a record gate delay of 9.86 ps is achieved by our ring oscillator, which exceeds silicon even at a lower supply voltage. Furthermore, the fabrication of basic logic gates indicates the potential for further digital integrated circuits. All of these results highlight ACNT-based FETs on the glass wafer as an effective solution/platform for further development of CNT-based electronics.

4.
Natl Sci Rev ; 11(3): nwae040, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38405687
5.
ACS Appl Mater Interfaces ; 16(10): 12813-12820, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38412248

RESUMEN

The semiconducting carbon nanotube (CNT) has been considered a promising candidate for future radiofrequency (RF) electronics due to its excellent electrical properties of high mobility and small capacitance. After decades of development, great progress has been achieved on CNT-based RF field-effect transistors (FETs). However, almost all elevations are owing to advancement of the CNT materials and fabrication process, while the study of device architecture is seldom considered and reported. In this work, we innovatively combined device architecture and related doping processes to further optimize CNT-based RF FETs by guiding process or materials with collaborative optimization for the first time and explore their effect on device performance carefully and statistically. Based on more mature random-oriented CNT materials, we fabricated CNT-based RF FETs having three different gate positions of device architecture variation accompanied by suitable doping schemes. The optimized FETs obtained 2-3 times of current density (transconductance) and 1.3 times the cutoff frequency and maximum oscillation frequency compared with unoptimized devices at the same channel length. After transistor-level verification of effect, we further built a CNT RF amplifier and demonstrated almost 10 dB of transducer gain improvement operating at 8 GHz for X-band application. The achieved results from this work would help further improve CNT RF performance beyond the materials and process point of view.

6.
Small ; 20(21): e2308430, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38126626

RESUMEN

Graphene nanoribbons (GNRs) are promising in nanoelectronics for their quasi-1D structures with tunable bandgaps. The methods for controllable fabrication of high-quality GNRs are still limited. Here a way to generate sub-5-nm GNRs by annealing single-walled carbon nanotubes (SWCNTs) on Cu(111) is demonstrated. The structural evolution process is characterized by low-temperature scanning tunneling microscopy. Substrate-dependent measurements on Au(111) and Ru(0001) reveal that the intermediate strong SWCNT-surface interaction plays a pivotal role in the formation of GNRs.

7.
ACS Nano ; 17(22): 22156-22166, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37955303

RESUMEN

Semiconducting single-walled carbon nanotubes (CNTs) have ideal electronic, chemical, and mechanical properties and are ideal channel materials for constructing transistors in the post-Moore era. Experiments have shown that CNT-based planar CMOS transistors can be scaled down to sub-10 nm technology nodes, demonstrating excellent performance far exceeding the silicon limit. At the same time, CNT electronic technology is essentially a thin-film transistor technology, which enables the construction of chips on such substrates as glass and polymers with an area of several meters, providing technical support for large-area and flexible electronic applications. In addition, since CNT electronics technology involves only low-temperature processes (less than 400 °C), the monolithic 3D integration of logic and memory devices can be realized which can greatly improve the comprehensive performance of the chip and lead to a thousand-fold performance increase for special data structures, especially in AI applications.

8.
Mater Horiz ; 10(11): 5185-5191, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37724683

RESUMEN

Single-walled carbon nanotubes (SWCNTs) have been attracting extensive attention due to their excellent properties. We have developed a strategy of using coal to synthesize SWCNTs for high performance field-effect transistors (FETs). The high-quality SWCNTs were synthesized by laser ablation using only coal as the carbon source and Co-Ni as the catalyst. We show that coal is a carbon source superior to graphite with higher yield and better selectivity toward SWCNTs with smaller diameters. Without any pre-purification, the as-prepared SWCNTs were directly sorted based on their conductivity and diameter using either aqueous two-phase extraction or organic phase extraction with PCz (poly[9-(1-octylonoyl)-9H-carbazole-2,7-diyl]). The semiconducting SWCNTs sorted by one-step PCz extraction were used to fabricate thin film FETs. The transformation of coal into FETs (and further integrated circuits) demonstrates an efficient way of utilizing natural resources and a marvelous example in green carbon technology. Considering its short steps and high feasibility, it presents great potential in future practical applications not limited to electronics.

9.
ACS Nano ; 17(15): 15155-15164, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37470321

RESUMEN

In the era of big data, the growing demand for data transmission capacity requires the communication band to expand from the traditional optical communication windows (∼1.3-1.6 µm) to the 2 µm band (1.8-2.1 µm). However, the largest bandwidth (∼30 GHz) of the current high-speed photodetectors for the 2 µm window is considerably less than the developed 1.55 µm band photodetectors based on III-V materials or germanium (>100 GHz). Here, we demonstrate a high-performance carbon nanotube (CNT) photodetector that can operate in both the 2 and 1.55 µm wavelength bands based on high-density CNT arrays on a quartz substrate. The CNT photodetector exhibits a high responsivity of 0.62 A/W and a large 3 dB bandwidth of 40 GHz (setup-limited) at 2 µm. The bandwidth is larger than that of existing photodetectors working in this wavelength range. Moreover, the CNT photodetector operating at 1.55 µm exhibits a setup-limited 3 dB bandwidth over 67 GHz at zero bias. Our work indicates that CNT photodetectors with high performance and low cost have great potential for future high-speed optical communication at both the 2 and 1.55 µm bands.

10.
Small ; 19(34): e2208198, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37046180

RESUMEN

The rapid and sensitive detection of trace-level viruses in a simple and reliable way is of great importance for epidemic prevention and control. Here, a multi-functionalized floating gate carbon nanotube field effect transistor (FG-CNT FET) based biosensor is reported for the single virus level detection of SARS-CoV-2 virus antigen and RNA rapidly with a portable sensing platform. The aptamers functionalized sensors can detect SARS-CoV-2 antigens from unprocessed nasopharyngeal swab samples within 1 min. Meanwhile, enhanced by a multi-probe strategy, the FG-CNT FET-based biosensor can detect the long chain RNA directly without amplification down to single virus level within 1 min. The device, constructed with packaged sensor chips and a portable sensing terminal, can distinguish 10 COVID-19 patients from 10 healthy individuals in clinical tests both by the RNAs and antigens by a combination detection strategy with an combined overall percent agreement (OPA) close to 100%. The results provide a general and simple method to enhance the sensitivity of FET-based biochemical sensors for the detection of nucleic acid molecules and demonstrate that the CNT FG FET biosensor is a versatile and reliable integrated platform for ultrasensitive multibiomarker detection without amplification and has great potential for point-of-care (POC) clinical tests.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Nanotubos de Carbono , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , Nanotubos de Carbono/química , Técnicas Biosensibles/métodos
11.
ACS Nano ; 17(8): 7466-7474, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37017276

RESUMEN

Low-dimensional materials with excellent optoelectronic properties and complementary metal-oxide-semiconductor (CMOS) process compatibility have the potential to construct high-performance photodetectors used in a cost-efficient monolithic or hybrid integrated optical communication system. Carbon nanotubes (CNTs) have attracted a lot of attention due to special geometric structure and broad band response, high optical absorption coefficient, ps-level intrinsic light response, high carrier mobility and wafer-scaled production process. Here, we demonstrated a high-performance waveguide-integrated CNT photodetector with asymmetric palladium (Pd) and hafnium (Hf) contact electrodes. The ideal photodetector structure was realized via comparing with simulation and experimental results, where the optimized device achieved a high 3 dB bandwidth ∼48 GHz at 0 V, as well as a responsivity ∼73.62 mA/W and dark current ∼0.157 µA at -2 V bias voltage. This waveguide-integrated CNT photodetector with low dark current and high bandwidth is helpful for next-generation optical communication and high-speed optical interconnects.

12.
Nano Lett ; 23(9): 3818-3825, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37083297

RESUMEN

Flexible electronic devices have shown increasingly promising value facilitating our daily lives. However, flexible spintronic devices remain in their infancy. Here, this research demonstrates a type of nonvolatile, low power dissipation, and programmable flexible spin logic device, which is based on the spin-orbit torque in polyimide (PI)/Ta/Pt/Co/Pt heterostructures fabricated via capillary-assisted electrochemical delamination. The magnetization switching ratio is shown to be about 50% for the flexible device and does not change after 100 cycles of bending, indicating the device has stable performance. By designing the path of pulse current, five Boolean logic gates AND, NAND, NOT, NOR, and OR can be realized in an integrated two-element device. Moreover, such peeling-off devices can be successfully transferred to almost any substrate, such as paper and human skin, and maintain high performance. The flexible PI/Ta/Pt/Co/Pt spin logic device serves as logic-in-memory architecture and can be used in wearable electronics.

13.
Nature ; 616(7957): 470-475, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36949203

RESUMEN

The International Roadmap for Devices and Systems (IRDS) forecasts that, for silicon-based metal-oxide-semiconductor (MOS) field-effect transistors (FETs), the scaling of the gate length will stop at 12 nm and the ultimate supply voltage will not decrease to less than 0.6 V (ref. 1). This defines the final integration density and power consumption at the end of the scaling process for silicon-based chips. In recent years, two-dimensional (2D) layered semiconductors with atom-scale thicknesses have been explored as potential channel materials to support further miniaturization and integrated electronics. However, so far, no 2D semiconductor-based FETs have exhibited performances that can surpass state-of-the-art silicon FETs. Here we report a FET with 2D indium selenide (InSe) with high thermal velocity as channel material that operates at 0.5 V and achieves record high transconductance of 6 mS µm-1 and a room-temperature ballistic ratio in the saturation region of 83%, surpassing those of any reported silicon FETs. An yttrium-doping-induced phase-transition method is developed for making ohmic contacts with InSe and the InSe FET is scaled down to 10 nm in channel length. Our InSe FETs can effectively suppress short-channel effects with a low subthreshold swing (SS) of 75 mV per decade and drain-induced barrier lowering (DIBL) of 22 mV V-1. Furthermore, low contact resistance of 62 Ω µm is reliably extracted in 10-nm ballistic InSe FETs, leading to a smaller intrinsic delay and much lower energy-delay product (EDP) than the predicted silicon limit.

14.
ACS Appl Mater Interfaces ; 15(8): 10830-10837, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36795423

RESUMEN

An aligned semiconducting carbon nanotube (A-CNT) array has been considered an excellent channel material to construct high-performance field-effect transistors (FETs) and integrated circuits (ICs). The purification and assembly processes to prepare a semiconducting A-CNT array require conjugated polymers, introducing stubborn residual polymers and stress at the interface between A-CNTs and substrate, which inevitably affects the fabrication and performance of the FETs. In this work, we develop a process to refresh the Si/SiO2 substrate surface underneath the A-CNT film by wet etching to clean the residual polymers and release the stress. Top-gated A-CNT FETs fabricated with this process show significant performance improvement especially in terms of saturation on-current, peak transconductance, hysteresis, and subthreshold swing. These improvements are attributed to the increase in carrier mobility from 1025 to 1374 cm2/Vs by 34% after the substrate surface refreshing process. Representative 200 nm gate-length A-CNT FETs exhibit an on-current of 1.42 mA/µm and a peak transconductance of 1.06 mS/µm at a drain-to-source bias of 1 V, subthreshold swing (SS) of 105 mV/dec, and negligible hysteresis and drain-induced barrier lowering (DIBL) of 5 mV/V.

15.
Small ; 19(1): e2204537, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36366937

RESUMEN

Carbon nanotube (CNT) field-effect transistors (FETs) have been considered ideal building blocks for radiation-hard integrated circuits (ICs), the demand for which is exponentially growing, especially in outer space exploration and the nuclear industry. Many studies on the radiation tolerance of CNT-based electronics have focused on the total ionizing dose (TID) effect, while few works have considered the single event effects (SEEs) and displacement damage (DD) effect, which are more difficult to measure but may be more important in practical applications. Measurements of the SEEs and DD effect of CNT FETs and ICs are first executed and then presented a comprehensive radiation effect analysis of CNT electronics. The CNT ICs without special irradiation reinforcement technology exhibit a comprehensive radiation tolerance, including a 1 × 104 MeVcm2 mg-1 level of the laser-equivalent threshold linear energy transfer (LET) for SEEs, 2.8 × 1013 MeV g-1 for DD and 2 Mrad (Si) for TID, which are at least four times higher than those in conventional radiation-hardened ICs. The ultrahigh intrinsic comprehensive radiation tolerance will promote the applications of CNT ICs in high-energy solar and cosmic radiation environments.


Asunto(s)
Nanotubos de Carbono , Transistores Electrónicos , Tolerancia a Radiación
16.
Nat Commun ; 13(1): 6734, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36347889

RESUMEN

High-speed flexible circuits are required in flexible systems to realize real-time information analysis or to construct wireless communication modules for emerging applications. Here, we present scaled carbon nanotube-based thin film transistors (CNT-TFTs) with channel lengths down to 450 nm on 2-µm-thick parylene substrates, achieving state-of-the-art performances of high on-state current (187.6 µA µm-1) and large transconductance (123.3 µS µm-1). Scaling behavior analyses reveal that the enhanced performance introduced by scaling is attributed to channel resistance reduction while the contact resistance (180 ± 50 kΩ per tube) remains unchanged, which is comparable to that achieved in devices on rigid substrates, indicating great potential in ultimate scaled flexible CNT-TFTs with high performance comparable to their counterparts on rigid substrates where contact resistance dominates the performance. Five-stage flexible ring oscillators are built to benchmark the speed of scaled devices, demonstrating a 281 ps stage delay at a low supply voltage of 2.6 V.

17.
ACS Nano ; 16(12): 21482-21490, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36416375

RESUMEN

High-density semiconducting aligned carbon nanotube (A-CNT) arrays have been demonstrated with wafer-scale preparation of materials and have shown high performance in P-type field-effect transistors (FETs) and great potential for applications in future digital integrated circuits (ICs). However, high-performance N-type FETs (N-FETs) have not yet been implemented with A-CNTs, making development of complementary metal-oxide-semiconductor (CMOS) technology, a necessary component for modern digital ICs, impossible. In this work, we reveal the mechanism hindering the realization of A-CNT N-FETs contacted by low-work-function metals and develop corresponding solutions to promote the performance of N-FETs to that of P-type FETs (P-FETs). The fabricated scandium (Sc)-contacted A-CNT N-FET with a 100 nm gate length exhibits an on-state current (Ion) of 800 µA/µm and a peak transconductance (gm) of 250 µS/µm, representing the highest performance of CNT-based N-FETs to date. Moreover, CMOS technology has been developed to realize N- and P-FETs with symmetric high performance based on A-CNTs. The fabricated A-CNT CMOS FETs show electron and hole mobilities of 325 and 241 cm2 V-1 s-1, respectively, which are slightly higher than the corresponding values of Si CMOS transistors. Our scalable fabrication of A-CNT CMOS FETs with comparable electronic performance to Si CMOS will promote the application of CNT-based electronics in digital ICs.

18.
Sci Adv ; 8(33): eabp8075, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35977018

RESUMEN

Epidermal electronic systems that simultaneously provide physiological information acquisition, processing, and storage are in high demand for health care/clinical applications. However, these system-level demonstrations using flexible devices are still challenging because of obstacles in device performance, functional module construction, or integration scale. Here, on the basis of carbon nanotubes, we present an epidermal system that incorporates flexible sensors, sensor interface circuits, and an integrated flash memory array to collect physiological information from the human body surface; amplify weak biosignals by high-performance differential amplifiers (voltage gain of 27 decibels, common-mode rejection ratio of >43 decibels, and gain bandwidth product of >22 kilohertz); and store the processed information in the memory array with performance on par with industrial standards (retention time of 108 seconds, program/erase voltages of ±2 volts, and endurance of 106 cycles). The results shed light on the great application potential of epidermal electronic systems in personalized diagnostic and physiological monitoring.

19.
ACS Appl Mater Interfaces ; 14(24): 28221-28229, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35679528

RESUMEN

Two-dimensional (2D) halide perovskite material is characterized by a mixed conducting behavior that possesses both electronic and ionic conductivity. The study on the influence of the light on ion migration in the 2D perovskite is helpful to improve the performance of perovskite-based optoelectronic devices. Here, we constructed an exfoliated 2D perovskite/carbon nanotubes (CNTs) heterostructure optical synapse, in which CNTs can be used as nanoprobes to qualitatively observe the ion aggregation or dissipation process in 2D perovskite, and found that light significantly changes the memory curve of the reconfigurable optical synapses. Through the molecular dynamic simulation, the dynamic process of ion migration in the heterostructure was simulated and the electrostatic interaction effect of nonequilibrium charge distribution of CNTs on iodide ion was demonstrated. Finally, an effective light-controlled process was realized through the synapses, which in situ regulated the performance of the weight-value discretized BP (WD-BP) neural network. This work lays a foundation for the future development of intelligent nano-optoelectronic devices.

20.
ACS Appl Mater Interfaces ; 13(40): 47756-47763, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34581560

RESUMEN

Carbon nanotube (CNT) field-effect transistors (FETs) and integrated circuits (ICs) have been predicted and demonstrated to be some of the most promising candidates for radiation-hardened electronics. The studies mainly focused on the radiation response of the whole transistors, and experiments or analyses to reveal the detailed radiation responses of different components of the FET were absent. Here, we use a controllable experimental method to decouple the total ionizing dose (TID) radiation effects on different individual components of top-gate CNT FETs, including the CNT channel, gate dielectric, and substrate. The substrate is found to be more vulnerable to radiation damage than the gate dielectric and CNT film in FETs. Furthermore, the CNT film not only acts as a radiation-hardened semiconducting channel but also protects the channel/substrate interface by partially shielding the substrate from radiation damage. On the basis of the experimental data, a model is built to predict the irradiation resistance limit of CNT top-gated FETs, which can withstand at least 155 kGy irradiation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...