Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Transl Med ; 22(1): 540, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844944

RESUMEN

The adaptability of glioblastoma (GBM) cells, encouraged by complex interactions with the tumour microenvironment (TME), currently renders GBM an incurable cancer. Despite intensive research, with many clinical trials, GBM patients rely on standard treatments including surgery followed by radiation and chemotherapy, which have been observed to induce a more aggressive phenotype in recurrent tumours. This failure to improve treatments is undoubtedly a result of insufficient models which fail to incorporate components of the human brain TME. Research has increasingly uncovered mechanisms of tumour-TME interactions that correlate to worsened patient prognoses, including tumour-associated astrocyte mitochondrial transfer, neuronal circuit remodelling and immunosuppression. This tumour hijacked TME is highly implicated in driving therapy resistance, with further alterations within the TME and tumour resulting from therapy exposure inducing increased tumour growth and invasion. Recent developments improving organoid models, including aspects of the TME, are paving an exciting future for the research and drug development for GBM, with the hopes of improving patient survival growing closer. This review focuses on GBMs interactions with the TME and their effect on tumour pathology and treatment efficiency, with a look at challenges GBM models face in sufficiently recapitulating this complex and highly adaptive cancer.


Asunto(s)
Neoplasias Encefálicas , Resistencia a Antineoplásicos , Glioblastoma , Recurrencia Local de Neoplasia , Microambiente Tumoral , Humanos , Glioblastoma/patología , Glioblastoma/terapia , Recurrencia Local de Neoplasia/patología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/terapia , Animales
2.
J Hazard Mater ; 473: 134536, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38759406

RESUMEN

With the widespread use of antibiotics and increasing environmental concerns regarding antibiotic abuse, the detection and degradation of antibiotic residues in various samples has become a pressing issue. Transcriptional factor (TF)-based whole-cell biosensors are low-cost, easy-to-use, and flexible tools for detecting chemicals and controlling bioprocesses. However, because of cytotoxicity caused by antibiotics, the application of such biosensors is limited in the presence of antibiotics. In this study, we used antibiotic-tolerant mutants obtained via adaptive laboratory evolution (ALE) to develop TF-based whole-cell biosensors for antibiotic monitoring and degradation. The biosensors had high performance and stability in detecting relatively high concentrations of tetracycline (Tc) and nisin. The ALE mutant-based Tc biosensor exhibited a 10-fold larger linear detection range than the wild-type strain-based biosensor. Then, the Tc biosensor was employed to detect residual amounts of Tc in mouse stool, serum, and urine samples and facilitate Tc biodegradation in mouse stool, demonstrating its high utility. Considering that ALE has been demonstrated to enhance cell tolerance to various toxic chemicals, our strategy might facilitate the development of whole-cell biosensors for most antibiotics and other toxic ligands.

3.
Int J Biol Macromol ; 270(Pt 1): 131782, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38734343

RESUMEN

Glioblastoma is a rapidly fatal brain cancer that does not respond to therapy. Previous research showed that the transcriptional repressor protein BCL6 is upregulated by chemo and radiotherapy in glioblastoma, and inhibition of BCL6 enhances the effectiveness of these therapies. Therefore, BCL6 is a promising target to improve the efficacy of current glioblastoma treatment. BCL6 acts as a transcriptional repressor in germinal centre B cells and as an oncogene in lymphoma and other cancers. However, in glioblastoma, BCL6 induced by therapy may not be able to repress transcription. Using a BCL6 inhibitor, the whole proteome response to irradiation was compared with and without BCL6 activity. Acute high dose irradiation caused BCL6 to switch from repressing the DNA damage response to promoting stress response signalling. Rapid immunoprecipitation mass spectrometry of endogenous proteins (RIME) enabled comparison of BCL6 partner proteins between untreated and irradiated glioblastoma cells. BCL6 was associated with transcriptional coregulators in untreated glioblastoma including the known partner NCOR2. However, this association was lost in response to acute irradiation, where BCL6 unexpectedly associated with synaptic and plasma membrane proteins. These results reveal the activity of BCL6 under therapy-induced stress is context-dependent, and potentially altered by the intensity of that stress.


Asunto(s)
Glioblastoma , Proteínas Proto-Oncogénicas c-bcl-6 , Glioblastoma/radioterapia , Glioblastoma/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/genética , Humanos , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Daño del ADN , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/metabolismo
4.
Br J Cancer ; 130(5): 703-715, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38012383

RESUMEN

High rates of failure, exorbitant costs, and the sluggish pace of new drug discovery and development have led to a growing interest in repurposing "old" drugs to treat both common and rare diseases, particularly cancer. Cancer, a complex and heterogeneous disease, often necessitates a combination of different treatment modalities to achieve optimal outcomes. The intrinsic polygenicity of cancer, intricate biological signalling networks, and feedback loops make the inhibition of a single target frequently insufficient for achieving the desired therapeutic impact. As a result, addressing these complex or "smart" malignancies demands equally sophisticated treatment strategies. Combinatory treatments that target the multifaceted oncogenic signalling network hold immense promise. Repurposed drugs offer a potential solution to this challenge, harnessing known compounds for new indications. By avoiding the prohibitive costs and long development timelines associated with novel cancer drugs, this approach holds the potential to usher in more effective, efficient, and cost-effective cancer treatments. The pursuit of combinatory therapies through drug repurposing may hold the key to achieving superior outcomes for cancer patients. However, drug repurposing faces significant commercial, technological and regulatory challenges that need to be addressed. This review explores the diverse approaches employed in drug repurposing, delves into the challenges faced by the drug repurposing community, and presents innovative solutions to overcome these obstacles. By emphasising the significance of combinatory treatments within the context of drug repurposing, we aim to unlock the full potential of this approach for enhancing cancer therapy. The positive aspects of drug repurposing in oncology are underscored here; encompassing personalized treatment, accelerated development, market opportunities for shelved drugs, cancer prevention, expanded patient reach, improved patient access, multi-partner collaborations, increased likelihood of approval, reduced costs, and enhanced combination therapy.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Reposicionamiento de Medicamentos , Neoplasias/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Oncología Médica , Terapia Combinada
5.
Microorganisms ; 11(2)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36838257

RESUMEN

The cellular mechanisms responsible for the regulation of nutrient exchange, immune response, and symbiont population growth in the cnidarian-dinoflagellate symbiosis are poorly resolved. Here, we employed liquid chromatography-mass spectrometry to elucidate proteomic changes associated with symbiosis in Breviolum minutum, a native symbiont of the sea anemone Exaiptasia diaphana ('Aiptasia'). We manipulated nutrients available to the algae in culture and to the holobiont in hospite (i.e., in symbiosis) and then monitored the impacts of our treatments on host-endosymbiont interactions. Both the symbiotic and nutritional states had significant impacts on the B. minutum proteome. B. minutum in hospite showed an increased abundance of proteins involved in phosphoinositol metabolism (e.g., glycerophosphoinositol permease 1 and phosphatidylinositol phosphatase) relative to the free-living alga, potentially reflecting inter-partner signalling that promotes the stability of the symbiosis. Proteins potentially involved in concentrating and fixing inorganic carbon (e.g., carbonic anhydrase, V-type ATPase) and in the assimilation of nitrogen (e.g., glutamine synthase) were more abundant in free-living B. minutum than in hospite, possibly due to host-facilitated access to inorganic carbon and nitrogen limitation by the host when in hospite. Photosystem proteins increased in abundance at high nutrient levels irrespective of the symbiotic state, as did proteins involved in antioxidant defences (e.g., superoxide dismutase, glutathione s-transferase). Proteins involved in iron metabolism were also affected by the nutritional state, with an increased iron demand and uptake under low nutrient treatments. These results detail the changes in symbiont physiology in response to the host microenvironment and nutrient availability and indicate potential symbiont-driven mechanisms that regulate the cnidarian-dinoflagellate symbiosis.

6.
Plant Cell Physiol ; 64(4): 433-447, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-36565060

RESUMEN

Coral bleaching is primarily caused by high sea surface temperatures, and nutrient enrichment of reefs is associated with lower resilience to thermal stress and ecological degradation. Excess inorganic nitrogen relative to phosphate has been proposed to sensitize corals to thermal bleaching. We assessed the physiological and proteomic responses of cultures of the dinoflagellate coral symbiont Symbiodinium microadriaticum to elevated temperature under low-nutrient, high-nutrient and phosphate-limited conditions. Elevated temperature induced reductions of many chloroplast proteins, particularly the light-harvesting complexes, and simultaneously increased the abundance of many chaperone proteins. Proteomes were similar when the N:P ratio was near the Redfield ratio, regardless of absolute N and P concentrations, but were strongly affected by phosphate limitation. Very high N:P inhibited Symbiodinium cell division while increasing the abundance of chloroplast proteins. The proteome response to phosphate limitation was greater than that to elevated temperature, as measured by the number of differentially abundant proteins. Increased physiological sensitivity to high temperatures under high nutrients or imbalanced N:P ratios was not apparent; however, oxidative stress response proteins were enriched among proteins responding to thermal stress under imbalanced N:P ratios. These data provide a detailed catalog of the effects of high temperatures and nutrients on a coral symbiont proteome.


Asunto(s)
Antozoos , Dinoflagelados , Animales , Arrecifes de Coral , Proteoma/metabolismo , Proteómica , Antozoos/metabolismo , Fosfatos/metabolismo , Dinoflagelados/metabolismo , Nutrientes , Simbiosis
7.
Clin Proteomics ; 19(1): 27, 2022 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-35842572

RESUMEN

BACKGROUND: Colon cancer is the third most common cancer and second highest cause of cancer deaths worldwide. The aim of the study was to find new biomarkers for diagnosis, prognosis and therapeutic drug targets for this disease. METHODS: Four low-grade and four high-grade human colon adenocarcinoma tumours with patient-matched normal colon tissues were analysed. Additionally, tissue-derived primary cell lines were established from each tumour tissue. The cell lines were validated using DNA sequencing to confirm that they are a suitable in vitro model for colon adenocarcinoma based on conserved gene mutations. Label-free quantitation proteomics was performed to compare the proteomes of colon adenocarcinoma samples to normal colon samples, and of colon adenocarcinoma tissues to tissue-derived cell lines to find significantly differentially abundant proteins. The functions enriched within the differentially expressed proteins were assessed using STRING. Proteomics data was validated by Western blotting. RESULTS: A total of 4767 proteins were identified across all tissues, and 4711 across primary tissue-derived cell lines. Of these, 3302 proteins were detected in both the tissues and the cell lines. On average, primary cell lines shared about 70% of proteins with their parent tissue, and they retained mutations to key colon adenocarcinoma-related genes and did not diverge far genetically from their parent tissues. Colon adenocarcinoma tissues displayed upregulation of RNA processing, steroid biosynthesis and detoxification, and downregulation of cytoskeletal organisation and loss of normal muscle function. Tissue-derived cell lines exhibited increased interferon-gamma signalling and aberrant ferroptosis. Overall, 318 proteins were significantly up-regulated and 362 proteins significantly down-regulated by comparisons of high-grade with low-grade tumours and low-grade tumour with normal colon tissues from both sample types. CONCLUSIONS: The differences exhibited between tissues and cell lines highlight the additional information that can be obtained from patient-derived primary cell lines. DNA sequencing and proteomics confirmed that these cell lines can be considered suitable in vitro models of the parent tumours. Various potential biomarkers for colon adenocarcinoma initiation and progression and drug targets were identified and discussed, including seven novel markers: ACSL4, ANK2, AMER3, EXOSC1, EXOSC6, GCLM, and TFRC.

8.
ISME J ; 16(8): 1883-1895, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35444262

RESUMEN

Endozoicomonas are prevalent, abundant bacterial associates of marine animals, including corals. Their role in holobiont health and functioning, however, remains poorly understood. To identify potential interactions within the coral holobiont, we characterized the novel isolate Endozoicomonas marisrubri sp. nov. 6c and assessed its transcriptomic and proteomic response to tissue extracts of its native host, the Red Sea coral Acropora humilis. We show that coral tissue extracts stimulated differential expression of genes putatively involved in symbiosis establishment via the modulation of the host immune response by E. marisrubri 6c, such as genes for flagellar assembly, ankyrins, ephrins, and serpins. Proteome analyses revealed that E. marisrubri 6c upregulated vitamin B1 and B6 biosynthesis and glycolytic processes in response to holobiont cues. Our results suggest that the priming of Endozoicomonas for a symbiotic lifestyle involves the modulation of host immunity and the exchange of essential metabolites with other holobiont members. Consequently, Endozoicomonas may play an important role in holobiont nutrient cycling and may therefore contribute to coral health, acclimatization, and adaptation.


Asunto(s)
Antozoos , Gammaproteobacteria , Animales , Antozoos/microbiología , Arrecifes de Coral , Señales (Psicología) , Gammaproteobacteria/genética , Proteómica , Simbiosis , Extractos de Tejidos
9.
Int J Mol Sci ; 23(2)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35055185

RESUMEN

Excess dietary fructose is a major public health concern, yet little is known about its influence on offspring development and later-life disease when consumed in excess during pregnancy. To determine whether increased maternal fructose intake could have long-term consequences on offspring health, we investigated the effects of 10% w/v fructose water intake during preconception and pregnancy in guinea pigs. Female Dunkin Hartley guinea pigs were fed a control diet (CD) or fructose diet (FD; providing 16% of total daily caloric intake) ad libitum 60 days prior to mating and throughout gestation. Dietary interventions ceased at day of delivery. Offspring were culled at day 21 (D21) (weaning) and at 4 months (4 M) (young adult). Fetal exposure to excess maternal fructose intake significantly increased male and female triglycerides at D21 and 4 M and circulating palmitoleic acid and total omega-7 through day 0 (D0) to 4 M. Proteomic and functional analysis of significantly differentially expressed proteins revealed that FD offspring (D21 and 4 M) had significantly increased mitochondrial metabolic activities of ß-oxidation, electron transport chain (ETC) and oxidative phosphorylation and reactive oxygen species production compared to the CD offspring. Western blotting analysis of both FD offspring validated the increased protein abundances of mitochondrial ETC complex II and IV, SREBP-1c and FAS, whereas VDAC1 expression was higher at D21 but lower at 4 M. We provide evidence demonstrating offspring programmed hepatic mitochondrial metabolism and de novo lipogenesis following excess maternal fructose exposure. These underlying asymptomatic programmed pathways may lead to a predisposition to metabolic dysfunction later in life.


Asunto(s)
Fructosa/efectos adversos , Metabolismo de los Lípidos/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Proteómica/métodos , Animales , Cromatografía Liquida , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Ácidos Grasos Monoinsaturados/sangre , Femenino , Cobayas , Humanos , Masculino , Mitocondrias Hepáticas/efectos de los fármacos , Fosforilación Oxidativa/efectos de los fármacos , Embarazo , Efectos Tardíos de la Exposición Prenatal/sangre , Especies Reactivas de Oxígeno/metabolismo , Espectrometría de Masas en Tándem , Triglicéridos/metabolismo , Destete
10.
Cells ; 12(1)2022 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-36611949

RESUMEN

Glioblastoma, a grade IV astrocytoma, is regarded as the most aggressive primary brain tumour with an overall median survival of 16.0 months following the standard treatment regimen of surgical resection, followed by radiotherapy and chemotherapy with temozolomide. Despite such intensive treatment, the tumour almost invariably recurs. This poor prognosis has most commonly been attributed to the initiation, propagation, and differentiation of cancer stem cells. Despite the unprecedented advances in biomedical research over the last decade, the current in vitro models are limited at preserving the inter- and intra-tumoural heterogeneity of primary tumours. The ability to understand and manipulate complex cancers such as glioblastoma requires disease models to be clinically and translationally relevant and encompass the cellular heterogeneity of such cancers. Therefore, brain cancer research models need to aim to recapitulate glioblastoma stem cell function, whilst remaining amenable for analysis. Fortunately, the recent development of 3D cultures has overcome some of these challenges, and cerebral organoids are emerging as cutting-edge tools in glioblastoma research. The opportunity to generate cerebral organoids via induced pluripotent stem cells, and to perform co-cultures with patient-derived cancer stem cells (GLICO model), has enabled the analysis of cancer development in a context that better mimics brain tissue architecture. In this article, we review the recent literature on the use of patient-derived glioblastoma organoid models and their applicability for drug screening, as well as provide a potential workflow for screening using the GLICO model. The proposed workflow is practical for use in most laboratories with accessible materials and equipment, a good first pass, and no animal work required. This workflow is also amenable for analysis, with separate measures of invasion, growth, and viability.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patología , Recurrencia Local de Neoplasia/patología , Temozolomida/farmacología , Temozolomida/uso terapéutico , Neoplasias Encefálicas/patología , Organoides
11.
J Exp Biol ; 224(22)2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34661236

RESUMEN

Tropical lagoon-inhabiting organisms live in highly irradiated ecosystems and are particularly susceptible to thermal stress resulting from climate change. However, despite living close to their thermal maxima, stress response mechanisms found in these organisms are poorly understood. We used a novel physiological-proteomic approach for sponges to describe the stress response mechanisms of the lagoon-inhabiting sponge Amphimedon navalis, when exposed to elevated seawater temperatures of +2°C and +4°C relative to a 26°C ambient temperature for 4 weeks. After 4 weeks of thermal exposure, the buoyant weight of the sponge experienced a significant decline, while its pumping rates and oxygen consumption rates significantly increased. Proteome dynamics revealed 50 differentially abundant proteins in sponges exposed to elevated temperature, suggesting that shifts in the sponge proteome were potential drivers of physiological dysfunction. Thermal stress promoted an increase in detoxification proteins, such as catalase, suggesting that an excess of reactive oxygen species in sponge cells was responsible for the significant increase in oxygen consumption. Elevated temperature also disrupted cellular growth and cell proliferation, promoting the loss of sponge biomass, and the high abundance of multiple α-tubulin chain proteins also indicated an increase in cytoskeletal activities within sponge cells, which may have induced the increase in sponge pumping rate. Our results show that sustained thermal exposure in susceptible lagoonal sponges may induce significant disruption of cellular homeostasis, leading to physiological dysfunction, and that a combined physiological-proteomic approach may provide new insights into physiological functions and cellular processes occurring in sponges.


Asunto(s)
Ecosistema , Poríferos , Animales , Cambio Climático , Transporte de Proteínas , Proteómica , Estrés Fisiológico
12.
PLoS One ; 16(8): e0256280, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34428252

RESUMEN

The cancer stem cell (CSC) concept proposes that cancer recurrence and metastasis are driven by CSCs. In this study, we investigated whether cells from colon adenocarcinoma (CA) with a CSC-like phenotype express renin-angiotensin system (RAS) components, and the effect of RAS inhibitors on CA-derived primary cell lines. Expression of RAS components was interrogated using immunohistochemical and immunofluorescence staining in 6 low-grade CA (LGCA) and 6 high-grade CA (HGCA) tissue samples and patient-matched normal colon samples. Primary cell lines derived from 4 HGCA tissues were treated with RAS inhibitors to investigate their effect on cellular metabolism, tumorsphere formation and transcription of pluripotency genes. Immunohistochemical and immunofluorescence staining showed expression of AT2R, ACE2, PRR, and cathepsins B and D by cells expressing pluripotency markers. ß-blockers and AT2R antagonists reduced cellular metabolism, pluripotency marker expression, and tumorsphere-forming capacity of CA-derived primary cell lines. This study suggests that the RAS is active in CSC-like cells in CA, and further investigation is warranted to determine whether RAS inhibition is a viable method of targeting CSCs.


Asunto(s)
Enzima Convertidora de Angiotensina 2/genética , Antihipertensivos/farmacología , Neoplasias del Colon/tratamiento farmacológico , Receptor de Angiotensina Tipo 2/genética , Antagonistas Adrenérgicos beta/farmacología , Bloqueadores del Receptor Tipo 2 de Angiotensina II/farmacología , Línea Celular Tumoral , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Sistema Renina-Angiotensina/efectos de los fármacos
13.
PLoS One ; 15(5): e0232934, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32428045

RESUMEN

AIMS: Much work has been done to find markers of cancer stem cells (CSCs) that distinguish them from the tumor bulk cells and normal cells. Recent CSC research has applied the induced pluripotent stem cell (iPSC) concept. In this study, we investigated the expression of a panel of iPSC markers in primary colon adenocarcinoma (CA)-derived cell lines. MATERIALS AND METHODS: Expression of iPSC markers by CA-derived primary cell lines was interrogated using immunocytochemistry, western blotting and RT-qPCR. The stem cell function of these cells was then assessed in vitro using differentiation and tumorsphere assays. RESULTS: Expression of iPSC markers OCT4, SOX2, NANOG, KLF4 and c-MYC was more widespread in high-grade CA (HGCA) cell lines than low-grade CA (LGCA) cell lines, as demonstrated by western blotting and RT-qPCR. These cells could be induced to differentiate down the three embryonic lineages. Cells derived from HGCA were more capable of forming tumorspheres than those derived from LGCA. EpCAM sorting revealed that a population enriched for EpCAMHigh cells formed larger tumorspheres than EpCAMLow cells. Pluripotency markers, SSEA4 and TRA-1-60, were co-expressed by a small subpopulation of cells that also co-expressed SOX2 in 75% and OCT4 in 50% of the cell lines. CONCLUSIONS: CA-derived primary cell lines contain tumorsphere-forming cells which express key pluripotency genes and can differentiate down 3 embryonic lineages, suggesting a pluripotent CSC-like phenotype. There appear to be two iPSC-like subpopulations, one with high EpCAM expression which forms larger tumorspheres than another with low EpCAM expression. Furthermore, these cells can be characterized based on iPSC marker expression, as we have previously demonstrated in the original CA tumor tissues.


Asunto(s)
Adenocarcinoma/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Neoplásicas/metabolismo , Biomarcadores de Tumor/metabolismo , Diferenciación Celular/genética , Línea Celular Tumoral , Reprogramación Celular/genética , Colon/citología , Colon/metabolismo , Neoplasias del Colon/metabolismo , Proteínas de Unión al ADN/análisis , Genes Homeobox , Genes myc , Humanos , Células Madre Pluripotentes Inducidas/citología , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/análisis , Proteína Homeótica Nanog/análisis , Factor 3 de Transcripción de Unión a Octámeros/análisis , Cultivo Primario de Células , Factores de Transcripción SOXB1/análisis , Factores de Transcripción/análisis
14.
PLoS One ; 14(9): e0221963, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31491003

RESUMEN

AIMS: The cancer stem cell concept proposes that tumor growth and recurrence is driven by a small population of cancer stem cells (CSCs). In this study we investigated the expression of induced-pluripotent stem cell (iPSC) markers and their localization in primary low-grade adenocarcinoma (LGCA) and high-grade adenocarcinoma (HGCA) and their patient-matched normal colon samples. MATERIALS AND METHODS: Transcription and translation of iPSC markers OCT4, SOX2, NANOG, KLF4 and c-MYC were investigated using immunohistochemical (IHC) staining, RT-qPCR and in-situ hybridization (ISH). RESULTS: All five iPSC markers were detected at the transcriptional and translational levels. Protein abundance was found to be correlated with tumor grade. Based on their protein expression within the tumors, two sub-populations of cells were identified: a NANOG+/OCT4- epithelial subpopulation and an OCT4+/NANOG- stromal subpopulation. All cases were accurately graded based on four pieces of iPSC marker-related data. CONCLUSIONS: This study suggests the presence of two putative sub-populations of CSCs: a NANOG+/OCT4- epithelial subpopulation and an OCT4+/NANOG- stromal subpopulation. Normal colon, LGCA and HGCA could be accurately distinguished from one another using iPSC marker expression. Once validated, novel combinations of iPSC markers may provide diagnostic and prognostic value to help guide patient management.


Asunto(s)
Adenocarcinoma/patología , Neoplasias del Colon/patología , Células Madre Neoplásicas/patología , Adenocarcinoma/metabolismo , Biomarcadores de Tumor/metabolismo , Neoplasias del Colon/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Factor 4 Similar a Kruppel , Clasificación del Tumor
15.
ISME J ; 13(9): 2334-2345, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31118473

RESUMEN

The acquisition of thermally tolerant algal symbionts by corals has been proposed as a natural or assisted mechanism of increasing coral reef resilience to anthropogenic climate change, but the cell-level processes determining the performance of new symbiotic associations are poorly understood. We used liquid chromatography-mass spectrometry to investigate the effects of an experimentally induced symbiosis on the host proteome of the model sea anemone Exaiptasia pallida. Aposymbiotic specimens were colonised by either the homologous dinoflagellate symbiont (Breviolum minutum) or a thermally tolerant, ecologically invasive heterologous symbiont (Durusdinium trenchii). Anemones containing D. trenchii exhibited minimal expression of Niemann-Pick C2 proteins, which have predicted biochemical roles in sterol transport and cell recognition, and glutamine synthetases, which are thought to be involved in nitrogen assimilation and recycling between partners. D. trenchii-colonised anemones had higher expression of methionine-synthesising betaine-homocysteine S-methyltransferases and proteins with predicted oxidative stress response functions. Multiple lysosome-associated proteins were less abundant in both symbiotic treatments compared with the aposymbiotic treatment. The differentially abundant proteins are predicted to represent pathways that may be involved in nutrient transport or resource allocation between partners. These results provide targets for specific experiments to elucidate the mechanisms underpinning compensatory physiology in the coral-dinoflagellate symbiosis.


Asunto(s)
Dinoflagelados/fisiología , Proteoma/genética , Anémonas de Mar/microbiología , Simbiosis , Animales , Arrecifes de Coral , Dinoflagelados/química , Dinoflagelados/genética , Calor , Estrés Oxidativo , Proteínas/genética , Proteínas/metabolismo , Proteoma/metabolismo , Proteómica , Anémonas de Mar/genética , Anémonas de Mar/fisiología
16.
J Am Soc Mass Spectrom ; 30(7): 1294-1307, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31025295

RESUMEN

One of the major challenges in proteomics is peptide identification from mass spectra containing high noise ratio and small number of signal (b-/y-ions) peaks. However, the accuracy and reliability of peptide identification in such highly imbalanced MS/MS data can be improved by applying a preprocessing step prior to peptide identification aiming at discriminating b-/y-ions from noise peaks in the spectra. In this study, we report a genetic programming (GP)-based preprocessing method for de-noising highly imbalanced and noisy CID MS/MS spectra. GP now becomes a popular machine learning method via automatic programming. GP preprocesses the highly noisy MS/MS spectra by classifying peaks as noise peaks or signal peaks in a binary classification manner. Meanwhile, a set of spectral fragment features based on the MS/MS fragmentation rules is extracted from the dataset to investigate their discriminating abilities by GP. A MS/MS spectral dataset containing thousands of spectra are used to train the GP model. As the GP tree-based representation has the capability for implicit feature selection during the evolutionary process, the evolved GP model with the selected features is compared with the best threshold-based method. The results show that the GP method improved the reliability of peptide identification and increased the identification rate of a de novo sequencing tool, PEAKS, to 99.4% from 80.1% achieved by the best threshold-based method. Moreover, the result of peptide identification by a database search tool, SEQUEST, using the data preprocessed by the GP method was statistically significant compared to the other methods.


Asunto(s)
Péptidos/análisis , Espectrometría de Masas en Tándem/métodos , Algoritmos , Secuencia de Aminoácidos , Iones/análisis , Proteómica/métodos , Relación Señal-Ruido , Programas Informáticos
17.
Clin Proteomics ; 16: 3, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30679934

RESUMEN

Biomarkers are urgently required to support current histological staging to provide additional accuracy in stratifying colorectal cancer (CRC) patients according to risk of spread to properly assign adjuvant chemotherapy after surgery. Chemotherapy is given to patients with stage III to reduce the risk of recurrence but is controversial in stage II patients. Up to 25% of stage II patients will relapse within 5 years after tumor removal and when this occurs cure is seldom possible. The aim of this study was to identify protein biomarkers to stratify risk of spread of CRC patients. Laser micro-dissection was used to isolate cancer cells from primary colorectal tumors of stage II patients which did or did not metastasize within 5 years after surgical resection. Protein expression differences between two groups of tumors were profiled by 2D-DIGE with saturation CyDye labeling and identified using MALDI-TOF mass spectrometry. Evaluation of protein candidates was conducted using tissue micro array (TMA) immunohistochemistry on 125 colorectal tumor tissue samples of different stages. A total of 55 differentially expressed proteins were identified. Ten protein biomarkers were chosen based on p value and ratio between non metastasized and metastazised groups and evaluated on 125 tissues using TMA immunohistochemistry. Expression of HLAB, protein 14-3-3ß, LTBP3, ADAMTS2, JAG2 and NME2 on tumour cells was significantly associated with clinical parameters related to tumour progression, invasion and metastasis. Kaplan-Meier survival curve showed strong expression of six proteins was associated with good CRC specific survival. Expression of HLAB, ADAMTS2, LTBP3, JAG2 and NME2 on tumour cells, was associated with tumour progression and invasion, metastasis and CRC specific survival may serve as potential biomarkers to stratify CRC patients into low and high risk of tumour metastasis. Combined methods of laser microdissection, 2D DIGE with saturation labelling and MALDI-TOF MS proved to be resourceful techniques capable of identifying protein biomarkers to predict risk of spread of CRC to liver.

18.
Arch Biochem Biophys ; 655: 1-11, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30077544

RESUMEN

The esterification of a fatty acyl moiety to diacylglycerol to form triacylglycerol (TAG) is catalysed by two diacylglycerol O-acyltransferases (DGATs) encoded by genes belonging to two distinct gene families. The enzymes are referred to as DGAT1 and DGAT2 in order of their identification. Both proteins are transmembrane proteins localized in the endoplasmic reticulum. Their membrane topologies are however significantly different. This difference is hypothesized to give the two isozymes different abilities to interact with other proteins and organelles and access to different pools of fatty acids, thereby creating a distinction between the enzymes in terms of their role and contribution to lipid metabolism. DGAT1 is proposed to have dual topology contributing to TAG synthesis on both sides of the ER membrane and esterifying only the pre-formed fatty acids. There is evidence to suggest that DGAT2 translocates to the lipid droplet (LD), associates with other proteins, and synthesizes cytosolic and luminal apolipoprotein B associated LD-TAG from both endogenous and exogenous fatty acids. The aim of this review is to differentiate between the two DGAT enzymes by comparing the genes that encode them, their proposed topologies, the proteins they interact with, and their roles in lipid metabolism.


Asunto(s)
Diacilglicerol O-Acetiltransferasa/química , Diacilglicerol O-Acetiltransferasa/metabolismo , Triglicéridos/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Membrana Celular/química , Diacilglicerol O-Acetiltransferasa/genética , Retículo Endoplásmico/metabolismo , Humanos , Gotas Lipídicas/metabolismo , Hígado/metabolismo , Dominios Proteicos
19.
J Clin Pathol ; 71(2): 110-116, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28942428

RESUMEN

Colorectal cancer (CRC) is the second most common cancer in women and the third most common in men. Adenocarcinoma accounts for 90% of CRC cases. There has been accumulating evidence in support of the cancer stem cell (CSC) concept of cancer which proposes that CSCs are central in the initiation of cancer. CSCs have been the focus of study in a range of cancers, including CRC. This has led to the identification and understanding of genes involved in the induction and maintenance of pluripotency of stem cells, and markers for CSCs, including those investigated specifically in CRC. Knowledge of the expression pattern of CSCs in CRC has been increasing in recent years, revealing a heterogeneous population of cells within CRC ranging from pluripotent to differentiated cells, with overlapping and sometimes unique combinations of markers. This review summarises current literature on the understanding of CSCs in CRC, including evidence of the presence of CSC subpopulations, and the stem cell markers currently used to identify and localise these CSC subpopulations. Future research into this field may lead to improved methods for early detection of CRC, novel therapy and monitoring of treatment for CRC and other cancer types.


Asunto(s)
Adenocarcinoma/etiología , Biomarcadores de Tumor , Neoplasias Colorrectales/etiología , Células Madre Neoplásicas , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Transformación Celular Neoplásica , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología
20.
J Proteome Res ; 16(6): 2121-2134, 2017 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-28474894

RESUMEN

Coral bleaching has devastating effects on coral survival and reef ecosystem function, but many of the fundamental cellular effects of thermal stress on cnidarian physiology are unclear. We used label-free liquid chromatography-tandem mass spectrometry to compare the effects of rapidly (33.5 °C, 24 h) and gradually (30 and 33.5 °C, 12 days) elevated temperatures on the proteome of the model symbiotic anemone Aiptasia. We identified 2133 proteins in Aiptasia, 136 of which were differentially abundant between treatments. Thermal shock, but not acclimation, resulted in significant abundance changes in 104 proteins, including those involved in protein folding and synthesis, redox homeostasis, and central metabolism. Nineteen abundant structural proteins showed particularly reduced abundance, demonstrating proteostasis disruption and potential protein synthesis inhibition. Heat shock induced antioxidant mechanisms and proteins involved in stabilizing nascent proteins, preventing protein aggregation and degrading damaged proteins, which is indicative of endoplasmic reticulum stress. Host proteostasis disruption occurred before either bleaching or symbiont photoinhibition was detected, suggesting host-derived reactive oxygen species production as the proximate cause of thermal damage. The pronounced abundance changes in endoplasmic reticulum proteins associated with proteostasis and protein turnover indicate that these processes are essential in the cellular response of symbiotic cnidarians to severe thermal stress.


Asunto(s)
Antozoos/metabolismo , Estrés del Retículo Endoplásmico , Respuesta al Choque Térmico/fisiología , Proteostasis , Simbiosis , Animales , Antozoos/química , Cromatografía Liquida , Oxidación-Reducción , Biosíntesis de Proteínas , Pliegue de Proteína , Proteómica/métodos , Especies Reactivas de Oxígeno/metabolismo , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...