Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(8): e202316706, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38126129

RESUMEN

Diarylethene molecular photoswitches hold great fascination as optical information materials due to their unique bistability and exceptional reversible photoswitching properties. Conventional diarylethenes, however, rely on UV light for ring-closure reactions, typically with modest yields. For practical application, diarylethenes driven by visible lights are preferred but achieving high ring-closure reaction yield remains a significant challenge. Herein, we synthesized a novel all-visible-light-driven photoswitch, TPAP-DTE, by facilely endcapping the dithienylethene (DTE) core with triphenylamine phenyl (TPAP) groups. Owing to the electron-donating conjugation effect of TPAP, the open-form TPAP-DTE responds strongly to short-wavelength visible lights with considerable photocyclization quantum yields and molar absorption coefficient. Upon 405 nm visible-light irradiation, TPAP-DTE achieves a ring-closure reaction yield exceeding 96.3 % (confirmed by both nuclear magnetic resonance spectroscopy and high-performance liquid chromatography). Its ring-opening reaction yield is 100 % upon irradiation with long-wavelength visible light. TPAP-DTE could be regarded as a bidirectional "quasi"-quantitative conversion molecular switch. Furthermore, TPAP-DTE exhibits robust fatigue resistance over 100 full photoswitching cycles and great anti-aging property under 85 °C and 85 % humidity for at least 1000 h. Consequently, its rewritable QR-code, multilevel data storage, and anti-counterfeiting/encryption applications are successfully demonstrated exclusively using visible lights, positioning TPAP-DTE as a highly promising medium for information recording.

2.
Kaohsiung J Med Sci ; 38(4): 347-356, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35005835

RESUMEN

Allergic rhinitis (AR) is a chronic inflammatory disease of the nasal mucosa. M2 macrophage polarization can reduce inflammation and repair tissue injury during AR development. Studies have substantiated the involvement of miRNAs in AR pathogenesis. Herein, the molecular mechanism of miR-214-3p in AR development was explored. To mimic the AR environment, ovalbumin (OVA) was used to treat macrophages. MiR-214-3p and glycogen synthase kinase 3 beta (GSK3B) expression in nasal mucus tissues and macrophages was assessed by RT-qPCR. The M2 phenotypic signature of CD206 in macrophages was assessed by flow cytometry. The protein expression of GSK3B and M2 macrophage markers (ARG-1 and IL-10) was evaluated by western blotting. The correlation between miR-214-3p and GSK3B was validated by a luciferase reporter assay. We found that miR-214-3p was overexpressed in macrophages and nasal mucus tissues from AR patients. MiR-214-3p facilitated M2 polarization of macrophages upon OVA stimulation. Mechanistically, miR-214-3p targeted the GSK3B 3' untranslated region in macrophages. In addition, GSK3B was downregulated in macrophages and nasal mucus tissues from AR patients. In rescue assays, GSK3B downregulation reversed the inhibitory effects of miR-214-3p silencing on M2 polarization of macrophages treated with OVA. Overall, miR-214-3p facilitates M2 macrophage polarization by targeting GSK3B.


Asunto(s)
MicroARNs , Regulación hacia Abajo , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Activación de Macrófagos/genética , Macrófagos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...