Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 12(19)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36234669

RESUMEN

The practical application of polymer composites in the electronic and communications industries often requires multi-properties, such as high thermal conductivity (TC), efficient electromagnetic interference (EMI) shielding ability with low electrical conductivity, superior tribological performance, reliable thermal stability and excellent mechanical properties. However, the integration of these mutually exclusive properties is still a challenge, ascribed to their different requirement on the incorporated nanofillers, composite microstructure as well as processing process. Herein, a well-designed boron nitride nanosheet (BN)/graphene nanosheet (GNP)/polyphenylene sulfide (PPS) composite with a dual-segregated structure is fabricated via high-pressure molding. Rather than homogenous mixing of the hybrid fillers, GNP is first coated on PPS particles and followed by encapsulating the conductive GNP layers with insulating BN, forming a BN shell-GNP layer-PPS core composite particles. After hot-pressing, a dual segregated structure is constructed, in which GNP and BN are distinctly separated and arranged in the interfaces of PPS, which on the one hand gives rise to high thermal conductivity, and on the other hand, the aggregated BN layer can act as an "isolation belt" to effectively reduce the electronic transmission. Impressively, high-pressure is loaded and it has a more profound effect on the EMI shielding and thermal conductive properties of PPS composites with a segregated structure than that with homogenous mixed-structure composites. Intriguingly, the synergetic enhancement effect of BN and GNP on both thermal conductive performance and EMI shielding is stimulated by high pressure. Consequently, PPS composites with 30 wt% GNP and 10 wt% BN hot-pressed under 600 MPa present the most superior comprehensive properties with a high TC of 6.4 W/m/K, outstanding EMI SE as high as 70 dB, marvelous tribological performance, reliable thermal stability and satisfactory mechanical properties, which make it promising for application in miniaturized electronic devices in complex environments.

2.
Materials (Basel) ; 14(1)2021 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-33401620

RESUMEN

Porous materials hold great potential in the field of sound absorption, but the most abundantly used materials, such as Polyurethane (PU) foam and polyvinyl chloride (PVC) foam, would inevitably bring environmental harms during fabrication. In this study, the nontoxic addition-molded room temperature vulcanized silicone rubber is chosen as the matrix, and NaCl particles are chosen as the pore forming agent to prepare open cell foams via the dissolve-separating foaming method. The effect of different amounts of NaCl (0-100 phr) on the cell structure, mechanical and sound absorption properties is investigated and analyzed. The results indicate that the cell structure could be tailored via changing the addition amount of NaCl, and open cell silicon rubber foams could be achieved with more than 20 phr NaCl addition. Open cell silicon foams show the most effective sound absorption for sound waves in middle frequency (1000-2000 Hz), which should be attributed to the improved impedance matching caused by the open cell structures. Additionally, the mechanical properties, including hardness, tensile strength and corresponding elastic properties, gradually decay to a steady value with the increasing addition amount of NaCl. Therefore, open cell silicone rubber foams are capable of sound absorption in middle frequency.

3.
RSC Adv ; 11(49): 30763-30770, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-35498917

RESUMEN

High-voltage lithium cobalt oxide (LCO) cathode material always suffers from rapid capacity decay due to irreversible phase transition and unexpected parasitic reactions between the charged LCO and conventional carbonate electrolyte. Here, a series of fluorinated electrolytes containing single or multiple fluorinated solvents were sought to match the high-voltage LCO cathode. The effects of regulating solvent components on the electrolyte properties, interfacial chemistry on both LCO cathode and mesocarbon microbead (MCMB) anode, and electrochemical performance of the LCO/MCMB cell were investigated. It is found that the synergistic effect of the fluorinated solvents obviously improves the reversible capacity and cycle capability for various half/full cell construction, in virtue of enhanced oxidation resistivity of the electrolyte and moderately-modified surface film on the cathode/anode. A novel perfluorinated electrolyte entirely consisting of fluorinated carbonate and fluorinated ether offers superior overall performance for the LCO/MCMB full cell at the upper cut-off voltage of 4.45 V.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...