Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 359: 142269, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38719129

RESUMEN

Temperature is a significant operational parameter of denitrifying filter (DF), which affects the microbial activity and the pollutants removal efficiency. This study investigated the influence of temperature on performance of advanced synergistic nitrogen removal (ASNR) of partial-denitrification anammox (PDA) and denitrification, consuming the hydrolytic and oxidation products of refractory organics in the actual secondary effluent (SE) as carbon source. When the test water temperature (TWT) was around 25, 20, 15 and 10 °C, the filtered effluent total nitrogen (TN) was 1.47, 1.70, 2.79 and 5.52 mg/L with the removal rate of 93.38%, 92.25%, 87.33% and 74.87%, and the effluent CODcr was 8.12, 8.45, 10.86 and 12.29 mg/L with the removal rate of 72.41%, 66.17%, 57.35% and 51.87%, respectively. The contribution rate of PDA to TN removal was 60.44%∼66.48%, and 0.77-0.96 mg chemical oxygen demand (CODcr) was actually consumed to remove 1 mg TN. The identified functional bacteria, such as anammox bacteria, manganese oxidizing bacteria (MnOB), hydrolytic bacteria and denitrifying bacteria, demonstrated that TN was removed by the ASNR, and the variation of the functional bacteria along the DF layer revealed the mechanism of the TWT affecting the efficiency of the ASNR. This technique presented a strong adaptability to the variation of the TWT, therefore, it has broad application prospect and superlative application value in advanced nitrogen removal of municipal wastewater.


Asunto(s)
Desnitrificación , Compuestos de Manganeso , Nitrógeno , Óxidos , Temperatura , Eliminación de Residuos Líquidos , Nitrógeno/metabolismo , Óxidos/química , Compuestos de Manganeso/química , Eliminación de Residuos Líquidos/métodos , Filtración/métodos , Bacterias/metabolismo , Reactores Biológicos/microbiología , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Aguas Residuales/química , Oxidación-Reducción , Análisis de la Demanda Biológica de Oxígeno
2.
RSC Adv ; 14(7): 4369-4381, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38304559

RESUMEN

Environmental awareness is receiving increasing attention in the petroleum industry, especially when associated with chemical agents applied in enhanced oil recovery (EOR) technology. The bio-based surfactant sodium cocoyl alaninate (SCA) is environmentally friendly and can be easily biodegraded, which makes it a promising alternative to traditional surfactants. Herein, the SCA surfactant is proposed as a foaming agent for enhanced oil recovery. Laboratory investigations on the surfactant concentration, foaming performance, microbubble characterization, interfacial tension, and foam-flooding of the traditional surfactants SDS and OP-10 have been conducted. In particular, the anti-salt abilities of these three surfactants have been studied, taking into consideration the reservoir conditions at Bohai Bay Basin, China. The results show that concentrations of 0.20 wt%, 0.20 wt% and 0.50 wt% for SCA, SDS and OP-10, respectively, can achieve optimum foaming ability and foaming stability under formation salinity conditions, and 0.20 wt% SCA achieved the best foaming ability and stability compared to 0.20 wt% SDS and 0.50 wt% OP-10. Sodium fatty acid groups and amino acid groups present in the SCA molecular structure have high surface activities under different salinity conditions, making SCA an excellent anti-salt surfactant for enhanced oil recovery. The microstructure analysis results showed that most of the SCA bubbles were smaller in size, with an average diameter of about 150 µm, and the distribution of SCA bubbles was more uniform, which can reduce the risk of foam coalescence and breakdown. The IFT value of the SCA/oil system was measured to be 0.157 mN m-1 at 101.5 °C, which was the lowest. A lower IFT can make liquid molecules more evenly distributed on the surface, and enhance the elasticity of the foam film. Core-flooding experimental results showed that a 0.30 PV SCA foam and secondary waterflooding can enhance oil recovery by more than 15% after primary waterflooding, which can reduce the mobility ratio from 3.7711 to 1.0211. The more viscous SCA foam caused a greater flow resistance, and effectively reduced the successive water fingering, leading to a more stable driving process to fully displace the remaining oil within the porous media. The bio-based surfactant SCA proposed in this paper has the potential for application in enhanced oil recovery in similar high-salt oil reservoirs.

3.
Toxics ; 12(1)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38250999

RESUMEN

Per- and Polyfluoroalkyl Substances (PFAS) bioaccumulate in the human body, presenting potential health risks and cellular toxicity. Their transport mechanisms and interactions with tissues and the circulatory system require further investigation. This study investigates the interaction mechanisms of six PFAS with Human Serum Albumin (HSA) using multi-spectroscopy, DFT and a molecular dynamics approach. Multi-spectral analysis shows that perfluorononanoic acid (PFNA) has the best binding capabilities with HSA. The order of binding constants (298 K) is as follows: "Perfluorononanoic Acid (PFNA, 7.81 × 106 L·mol-1) > Perfluoro-2,5-dimethyl-3,6-dioxanonanoic Acid (HFPO-TA, 3.70 × 106 L·mol-1) > Perfluorooctanoic Acid (PFOA, 2.27 × 105 L·mol-1) > Perfluoro-3,6,9-trioxadecanoic Acid (PFO3DA, 1.59 × 105 L·mol-1) > Perfluoroheptanoic Acid (PFHpA, 4.53 × 103 L·mol-1) > Dodecafluorosuberic Acid (DFSA, 1.52 × 103 L·mol-1)". Thermodynamic analysis suggests that PFNA and PFO3DA's interactions with HSA are exothermic, driven primarily by hydrogen bonds or van der Waals interactions. PFHpA, DFSA, PFOA, and HFPO-TA's interactions with HSA, on the other hand, are endothermic processes primarily driven by hydrophobic interactions. Competitive probe results show that the main HSA-PFAS binding site is in the HSA structure's subdomain IIA. These findings are also consistent with the findings of molecular docking. Molecular dynamics simulation (MD) analysis further shows that the lowest binding energy (-38.83 kcal/mol) is fund in the HSA-PFNA complex, indicating that PFNA binds more readily with HSA. Energy decomposition analysis also indicates that van der Waals and electrostatic interactions are the main forces for the HSA-PFAS complexes. Correlation analysis reveals that DFT quantum chemical descriptors related to electrostatic distribution and characteristics like ESP and ALIE are more representative in characterizing HSA-PFAS binding. This study sheds light on the interactions between HSA and PFAS. It guides health risk assessments and control strategies against PFAS, serving as a critical starting point for further public health research.

4.
Biochem Biophys Res Commun ; 683: 149108, 2023 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-37862782

RESUMEN

The environmental and health risks associated with sulfonamide antibiotics (SAs) are receiving increasing attention. Through multi-spectroscopy, density functional theory (DFT), and molecular docking, this study investigated the interaction features and mechanisms between six representative SAs and human serum albumin (HSA). Multi-spectroscopy analysis showed that the six SAs had significant binding capabilities with HSA. The order of binding constants at 298 K was as follows: sulfadoxine (SDX): 7.18 × 105 L mol-1 > sulfamethizole (SMT): 6.28 × 105 L mol-1 > sulfamerazine (SMR): 2.70 × 104 L mol-1 > sulfamonomethoxine (SMM): 2.54 × 104 L mol-1 > sulfamethazine (SMZ): 3.06 × 104 L mol-1 > sulfadimethoxine (SDM): 2.50 × 104 L mol-1. During the molecular docking process of the six SAs with HSA, the binding affinity range is from -7.4 kcal mol-1 to -8.6 kcal mol-1. Notably, the docking result of HSA-SDX reached the maximum of -8.6 kcal mol-1, indicating that SDX may possess the highest binding capacity to HSA. HSA-SDX binding, identified as a static quenching and exothermic process, is primarily driven by hydrogen bonds (H bonds) or van der Waals (vdW) interactions. The quenching processes of SMR/SMZ/SMM/SDX/SMT to HSA are a combination of dynamic and static quenching, indicating an endothermic reaction. Hydrophobic interactions are primarily accountable for SMR/SMZ/SMM/SDX/SMT and HSA binding. Competition binding results revealed that the primary HSA-SAs binding sites are in the subdomain IB of the HAS structure, consistent with the results of molecule docking. The correlation analysis based on DFT calculations revealed an inherent relationship between the structural chemical features of SAs and the binding performance of HSA-SAs. The dual descriptor (DD) and the electrophilic Fukui function were found to have a significant relationship (0.71 and -0.71, respectively) with the binding constants of HSA-SAs, predicting the binding performance of SAs and HSA. These insights have substantial scientific value for evaluating the environmental risks of SAs as well as understanding their impact on biological life activities.


Asunto(s)
Albúmina Sérica Humana , Albúmina Sérica , Humanos , Albúmina Sérica Humana/metabolismo , Simulación del Acoplamiento Molecular , Albúmina Sérica/química , Teoría Funcional de la Densidad , Sulfonamidas , Unión Proteica , Espectrometría de Fluorescencia , Sitios de Unión , Antibacterianos , Sulfanilamida , Dicroismo Circular , Termodinámica
5.
Nanomaterials (Basel) ; 13(19)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37836317

RESUMEN

The requirement of simple, efficient and accurate detection of tetracycline (TC) in water environments poses new challenges for sensing platform development. Here, we report a simple method for TC sensing via fluorescence detection based on metal-organic coordination polymers (MOCPs, (4-Hap)4(Mo8O26)) coated with nitrogen-doped carbon dots (NCDs). These NCDs@(4-Hap)4(Mo8O26) composites showed excellent luminescence features of NCDs with stable bright-blue emission under UV light. The results of the sensing experiment showed that the fluorescence of NCDs@(4-Hap)4(Mo8O26) can be quenched by TC (166 µM) with 94.1% quenching efficiency via the inner filter effect (IFE) in a short time (10 s), with a detection limit (LOD) of 33.9 nM in a linear range of 8-107 µM. More significantly, NCDs@(4-Hap)4(Mo8O26) showed a high selectivity for TC sensing in the presence of anions and metal cations commonly found in water environments and can be reused in at least six cycles after washing with alcohol. The potential practicality of NCDs@(4-Hap)4(Mo8O26) was verified by sensing TC in real water samples with the standard addition method, and satisfactory recoveries from 91.95% to 104.72% were obtained.

6.
Sci Total Environ ; 904: 166976, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37704153

RESUMEN

Cement kiln co-processing is becoming the main strategy to dispose of hazardous waste containing Cr. A newly-discovered pentavalent Cr compound, which was proved to be formed during cement kiln co-processing of solid waste, is partly responsible for the water-soluble Cr released from the cement. However, the formation characteristics and the solubility of Cr(V) are still unclear to date. In this study, the reaction kinetics and further redox reactions of Cr(V) at high temperature were examined, and its crystal structure and solubility were also explored. At the temperature range of 1000-1200 °C, the formation rate of Ca5(CrO4)3O0.5 reached over 90 % within 10 min, and then slowly increased to near 100 % from 10 min to 10 h. shows that Ca5(CrO4)3O0.5 is formed by interface reaction at an early period, and by diffusion at a later period. The kinetic analysis indicates that Ca5(CrO4)3O0.5 is initially formed through an interface reaction and subsequently through diffusion. Ca5(CrO4)3O0.5 was identified and assigned as hexagonal crystal group (P63/m). Approximately 0.55 g and 0.15 g of Ca5(CrO4)3O0.5 dissolve in neutral water at 100 °C and 50 °C, and the concentrations of Cr(V) in water reach 550 and 150 mg/L, respectively. Additionally, this study finds that at the temperature range of 400-700 °C Ca5(CrO4)3O0.5 can be oxidized into CaCrO4, and at the temperature higher than 1400 °C, it can be further converted into Ca3(CrO4)2 and reduced into CaCr2O4. This study gives a deep insight into Cr oxidation-reduction reaction during thermal treatment of solid waste. These insights provide a comprehensive understanding of Cr oxidation-reduction reactions during the thermal treatment of solid waste, offering valuable guidance for waste management strategies.

7.
Water Res ; 241: 120163, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37276654

RESUMEN

Due to the high operational cost and secondary pollution of the conventional advanced nitrogen removal of municipal wastewater, a novel concept and technique of advanced synergetic nitrogen removal of partial-denitrification anammox and denitrification was proposed, which used the oxidation products of refractory organic matters in the secondary effluent of municipal wastewater treatment plant (MWWTP) by biogenic manganese oxides (BMOs) as carbon source. When the influent NH4+-N in the denitrifying filter was about 1.0, 2.0, 3.0, 4.0, 5.0 and 7.0 mg/L, total nitrogen (TN) in the effluent decreased from about 22 mg/L to 11.00, 7.85, 6.85, 5.20, 4.15 and 2.09 mg/L, and the corresponding removal rate was 49.15, 64.82, 69.40, 76.70, 81.36 and 90.58%, respectively. The proportional contribution of the partial-denitrification anammox pathway to the TN removal was 12.00, 26.45, 39.70, 46.04, 54.97 and 64.01%, and the actual CODcr consumption of removing 1 mg TN was 0.75, 1.43, 1.26, 1.17, 1.08 and 0.99 mg, respectively, which was much lower than the theoretical CODcr consumption of denitrification. Furthermore, CODcr in the effluent decreased to 8.12 mg/L with a removal rate of 72.40%, and the removed organic matters were mainly non-fluorescent organic matters. Kinds of denitrifying bacteria, anammox bacteria, hydrolytic bacteria and manganese oxidizing bacteria (MnOB) were identified in the denitrifying filter, which demonstrated that the advanced synergetic nitrogen removal was achieved. This novel technology presented the advantages of high efficiency of TN and CODcr removal, low operational cost and no secondary pollution.


Asunto(s)
Manganeso , Aguas Residuales , Desnitrificación , Nitrógeno , Carbono , Reactores Biológicos/microbiología , Oxidación-Reducción , Óxidos , Aguas del Alcantarillado
8.
J Environ Manage ; 331: 117299, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36642053

RESUMEN

Advanced nitrogen removal faces the challenges of high operational cost resulted from the additional carbon source and secondary pollution caused by inaccurate carbon source dosage in municipal wastewater. To address these problems, a novel carbon source was developed, which was the oxidation products of refractory organic matters in the secondary effluent of municipal wastewater treatment plant (MWWTP) by in-situ generated biogenic manganese oxides (BMOs) in the denitrifying filter. In the steady phase, the effluent chemical oxygen demand (CODcr), NO3--N and total nitrogen (TN) in the denitrifying filter 2# with BMOs was 11.27, 9.03 and 10.36 mg/L, and the corresponding removal efficiency was 54.79%, 51.85% and 48.03%, respectively, which was significantly higher than those in the control denitrifying filter 1# that the removal efficiency of CODcr, NO3--N and TN was only 32.30%, 28.58% and 29.36%, respectively. Kinds of denitrifying bacteria (Candidatus Competibacter, Defluviicoccus, Dechloromonas, Candidatus Competibacter, Dechloromonas, Pseudomonas, Thauera, Acinetobacter, Denitratisoma, Anaerolineae and Denitratisoma) and anammox bacteria (Pirellula, Gemmata, Anammoximicrobium and Brocadia) were identified in the denitrifying filters 1# and 2#, which explained why the actual CODcr consumption (1.55 and 1.44 mg) of reducing 1 mg NO3--N was much lower than the theoretical CODcr consumption. While manganese oxidizing bacteria (MnOB, Bacillus, Crenothrix and Pedomicrobium) was only identified in the denitrifying filter 2#. This novel technology presented the advantages of no additional carbon source, low operational cost and no secondary pollution. Therefore, the novel technology has superlative application value and broad application prospect.


Asunto(s)
Manganeso , Microbiota , Desnitrificación , Nitrógeno , Óxidos , Oxidación-Reducción , Bacterias , Carbono , Reactores Biológicos/microbiología , Aguas del Alcantarillado
9.
Environ Sci Pollut Res Int ; 30(7): 18285-18295, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36208375

RESUMEN

Titanium xerogel coagulant (TXC) is a new type of coagulant that has attracted much attention in recent years. However, the tetracycline removal performance of TXC was not satisfactory because low isoelectric point (pHiep) inhibited the electrical neutralization efficiency of TXC in an alkaline environment. To overcome this shortcoming, a composite xerogel coagulant (titanium-aluminum xerogel composite coagulant) was prepared. The removal of tetracycline and turbidity was used as evaluation indexes. It was proved that the combination of aluminum (III) and titanium (IV) enhanced the resistance of TXC to pH. The synthesized titanium-aluminum xerogel composite coagulant (TXAC) has an excellent removal ability of tetracycline in a wide pH range (pH = 5-10). At pH 8.8, the dosage required to remove 80% tetracycline from water decreased from 93 (TXC) to 35 mg/L (TXAC). The reason for this improvement could be attributed to (i) aluminum (III) enhanced the electric neutralization of TXC to negatively charged pollutants in an alkaline environment; (ii) the complexing ability of organic matter and aluminum (III) was enhanced. This work provides a feasible scheme for the pretreatment of tetracycline in water to meet the pretreatment requirements of special water.


Asunto(s)
Aluminio , Purificación del Agua , Titanio , Agua , Floculación , Tetraciclina , Antibacterianos
10.
Bioresour Technol ; 369: 128360, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36423767

RESUMEN

Heavy metals in livestock manure pose a threat to the environment after biogas fertilizer being utilized, while its bioavailability is reduced substantially by passivator during the anaerobic digestion. In this study, an optimal composite passivator of humic acid, fly ash and biochar with proportion of 7.5%:7.5%:7.5% and 5.0%:7.5%:7.5% is obtained and the passivation mechanism on Cu and Zn during anaerobic digestion of pig manure is explored. The content of humic acid (HA) in biogas residue increased by 15.66-27.82%, which promoted the transformation from FA-Cu/Zn to HA-Cu/Zn and was beneficial to the passivation of Cu and Zn. The bioavailability of Cu and Zn was reduced by the adsorption and complexation at the early and middle stages of anaerobic digestion. Humic substances play a major role in the passivation of heavy metals at the late stage. The composite passivator can improve the humification degree of biogas residue and reduce heavy metal biotoxicity.


Asunto(s)
Sustancias Húmicas , Metales Pesados , Animales , Porcinos , Estiércol , Anaerobiosis , Biocombustibles , Metales Pesados/química , Zinc
11.
Environ Sci Pollut Res Int ; 30(8): 21104-21114, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36264459

RESUMEN

Take-away containers are the common food contact materials (FCMs) that are widely used in daily life. However, little is known regarding the effects of different food simulants on the pollution characteristics of microplastics derived from food containers, as well as the toxic effects of the chemical substances that are leached from them. Extracts were obtained by adding organic solvents into plastic containers (polypropylene, PP; polystyrene, PS) to simulate aqueous, alcoholic, and fatty environments. The extracted substances and their toxic effects were then assessed by counting and characterizing the resulting microplastics and performing bio-acute toxicity assays. The results demonstrated that the highest abundance of microplastics occurred in PS containers in fatty environments, which was likely due to the rough surface of the PS. In contrast, organic solvents seemed more conducive to the migration of substances. Furthermore, the PP and PS extracts in an alcohol and fatty environment have significant impacts on zebrafish embryo development, including arrhythmia, pericardial cysts, and spinal curvature.


Asunto(s)
Ácidos Ftálicos , Contaminantes Químicos del Agua , Animales , Plásticos/toxicidad , Plásticos/química , Microplásticos/toxicidad , Pez Cebra , Ácidos Ftálicos/química , Poliestirenos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis
12.
J Hazard Mater ; 443(Pt A): 130152, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36244104

RESUMEN

The utilization of auxiliary electrode can improve substantially the electrokinetic remediation efficiency of heavy metal contaminated soil. The increase in the auxiliary electrode performance is the key to further promote the electrokinetic remediation efficiency. In this study, two kinds of auxiliary electrodes, pure FeOCl and doped FeOCl with W and S, were prepared and used in the electrokinetic remediation of Cr(VI) contaminated soil. The system equipped with the auxiliary electrode doped FeOCl brought more stable system current (202 mA) and more uniform electric field than blank group (130 mA). The reduction rate of Cr(VI) was increased by 50% due to the presence of Fe2+ and S2-. The accelerating migration of ions by auxiliary electrode was responsible for the improvement in electrokinetic remediation efficiency. Density functional theory (DFT) calculation showed that Cl vacancy formation energies of pure FeOCl, S-doped FeOCl (S/FeOCl) and W-doped FeOCl (W/FeOCl) were 1.29, 1.15 and 1.49 eV respectively, and the ion diffusion barriers were 0.093, 0.099 and 0.148 eV respectively. Calculation results indicated that the doping of S was conducive to the diffusion of Cl ions, and the bonding of W-Cl was stronger than Fe-Cl. The charging and discharging process of auxiliary electrode became easier due to the formation of lower vacancy in S-doped FeOCl, which could bring a higher current for the electrokinetic remediation system. The electrochemical performance of FeOCl doped with W and S was improved obviously. This study provided a further explanation for the positive role of auxiliary electrode in electrokinetic remediation system.

13.
Artículo en Inglés | MEDLINE | ID: mdl-36360969

RESUMEN

The treatment of livestock manure caused by the expansion of the breeding industry in China has attracted wide attention. Heavy metals in pig manure can pollute soil and water and even transfer to crops, posing harm to humans through the food chain. In this study, corn straw was selected as the additive and introduced into the anaerobic digestion. Sepiolite (SE), ferric oxide (Fe2O3), attapulgite (AT) and ferric sulfate (FeSO4) were used as passivators to compare the effects of these inorganic passivators on gas production and passivation of heavy metals during the process of the anaerobic digestion. When the dry mass ratio of pig manure to straw is 8:2, the gas production efficiency is optimal. SE, AT and ferric sulfate have a much stronger ability to improve gas production performance than Fe2O3. The total gas production increased by 10.34%, 6.62% and 4.56%, and the average methane production concentration increased by 0.7%, 0.3% and 0.4%, respectively. The influence of SE, AT and ferric sulfate on the passivation of heavy metals is much better than Fe2O3, and the fractions in biological effective forms of Cu and Zn reduced by 41.87 and 19.32%, respectively. The anaerobic digestion of mixed materials is conducive to the gas production and the passivation of heavy metals. Therefore, SE, AT and ferric sulfate are selected as composite passivators, and the optimal ratio of inorganic composite passivators i: AT 7.5 g/L, ferric sulfate 5 g/L and SE 7.5 g/L, according to the results of orthogonal experiments. This study can provide a theoretical basis for the safe application of biogas fertilizers.


Asunto(s)
Estiércol , Metales Pesados , Humanos , Porcinos , Animales , Zea mays , Anaerobiosis , Fitomejoramiento , Biocombustibles
14.
Sci Total Environ ; 800: 149634, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34426319

RESUMEN

Cr-hosting spinels are frequently formed during heating of solid wastes containing multiple metals, and its oxidation reaction (Cr(III) → Cr(VI)) is closely related with the toxicity of products. This study examined the reaction behaviors of Cr-hosting spinels (ZnCr2O4, CuCr2O4 and NiCr2O4) at high temperature and proposed possible oxidation mechanism. Cr-hosting spinels alone usually exhibit good thermal stability at high temperature. However, CaO can trigger the oxidation of Cr(III) in Cr-hosting spinels at 500-900 °C and ZnCr2O4 is easier to be oxidized than NiCr2O4 and CuCr2O4 at same condition. The oxidation of Cr-hosting spinels is accompanied with the formation of CaCrO4 and divalent metal oxides (ZnO, NiO and CuO). The broken and rebuilding of CrO bonds are key steps for Cr-hosting spinels oxidation, blocking the combination of free Cr with Ca and O atoms maybe more effective approach for suppressing Cr(III) oxidation. Furthermore, CaO can trigger the reduction of CaCrO4 into a new Cr(V) compound (Ca5(CrO4)3O0.5) at 900-1200 °C. As the temperature rising to 1300 °C, CuO reacts with CaCrO4 to form CuCrO2, in which Cu(II) and Cr(VI) are reduced into Cu(I) and Cr(III) respectively. This study provided some new knowledge for the reaction behavior of Cr-hosting spinels when solid wastes containing Cr were treated at high temperature.


Asunto(s)
Calefacción , Residuos Sólidos , Óxido de Aluminio , Cromo , Óxido de Magnesio , Oxidación-Reducción
15.
Environ Sci Pollut Res Int ; 28(47): 67203-67213, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34245413

RESUMEN

Much more attention has been poured into microplastic pollution in freshwater systems recently. In the present study, the pollution of microplastics (MPs) in surface water and freshwater fish (crucian carp, etc.) were investigated from Gehu Lake, which is the second largest lake in southern Jiangsu after Taihu Lake. The result manifested that the average abundance of MPs was respectively 6.33±2.67 n/L for surface water and 10.7 items per individual for freshwater fish. The distribution of MPs in Gehu Lake varied from place to place, with the highest abundance of MPs was observed in the two estuaries of the eastern part of the lake. It was speculated that topographical factors and human factors were the main factors affecting the abundance and distribution of MPs. Transparent fibers were the main type of MPs in water samples, accounting for 69.70% of all detected particles. Meanwhile, most of the MPs ingested by freshwater fish were fibers, and the main colors were transparent and blue. In addition, the dominant size of the MPs was between 0.1 to 0.5 mm in water and fish samples. Moreover, PES, man-made fiber, and PP were the dominant polymer types in the surface water and fish samples. The results of this investigation can provide basic data for the research and management of MPs in freshwater systems.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , China , Monitoreo del Ambiente , Humanos , Lagos , Plásticos , Agua , Contaminantes Químicos del Agua/análisis
16.
Mar Pollut Bull ; 169: 112448, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34022558

RESUMEN

The increasing abundance of microplastics (MPs) in rivers and oceans continues to face major challenges. In particular, MPs with smaller particle sizes are difficult to identify and quantify when they reach the environment. This study investigated four typical wastewater treatment plants (WWTPs), including urban WWTPs and industrial WWTP with different treatment technologies. The results showed that the average abundance of MPs in the influent and effluent was 538.67 ± 22.05 n/L to 1290 ± 65.26 n/L and 20.44 ± 1.19 n/L to 40.67 ± 11.12 n/L. The primary and secondary treatment processes can effectively remove MPs between 51.04% and 72.82% from wastewater. After tertiary treatments, the removal efficiency was further increased to more than 90%. The study aims to explore the removal mechanism of MPs in each stage of the wastewater treatment process and to reveal the fate of MPs in WWTPs, and help to understand their future monitoring to optimize the wastewater treatment process.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Monitoreo del Ambiente , Microplásticos , Plásticos , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua/análisis
17.
Environ Sci Pollut Res Int ; 28(22): 28507-28517, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33538969

RESUMEN

The evaporative-crystallization process (ECP) is a frequently used approach for complete nutrient recovery from human urine, and crystallization sequence is related to the selection of seed and the optimization of crystallization process. In this study, three hydrolyzed urine (HU) samples, which were acidified to an initial pH of 4 with HCl, H2SO4, and H3PO4, were used to recover crystallized products by ECP, their crystallization process and thermodynamic properties during ECP were compared, and the detailed crystallization sequence was analyzed using the PHREEQC-2 simulation. The results showed that the pH-adjusted acid has a significant effect on crystal precipitation, and the new crystal in HCl-4-HU, H2SO4-4-HU, and H3PO4-4-HU first appeared at volume concentration factors (CFV) of 19.61, 9.90, and 9.96, respectively. Furthermore, the simulated crystallization process characteristics of HU by PHREEQC-2 have a good fit with the actual experimental data, and crystallization sequence of HCl-4-HU, H2SO4-4-HU, H3PO4-4-HU during ECP were NH4Cl (CFV from 10.25 to 100) / NaCl (CFV from 71.43 to 100), NH4NaSO4 (CFV from 10.25 to 55.56) / NH4Cl (CFV from 20 to 100) / (NH4)2SO4 (CFV from 40.45 to 100), NH4H2PO4 (CFV from 10.25 to 100) / NaH2PO4 (CFV from38.46 to 55.5) / NaCl (CFV from 45.46 to 100), respectively. The present study clearly reveals the crystallization sequence and thermodynamic properties of nutrient elements in acidified HU, which provides an important theoretical basis for the optimization of crystallized products obtained from HU for future study.


Asunto(s)
Ácidos , Orina , Cristalización , Humanos , Concentración de Iones de Hidrógeno , Termodinámica
18.
Chemosphere ; 262: 127924, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32805661

RESUMEN

Cr(VI) compounds at high temperature usually tend to decompose and reduce into Cr(III) due to thermodynamically instability for Cr(VI). This study found Cr(VI) could be reduced into Cr(V) instead of Cr(III) in the presence of CaO during heating solid waste containing Cr(VI). CaCrO4 is prepared and mixed with CaO as simulated solid waste containing Cr(VI). It was found that CaCrO4 reacted with CaO and formed a new product Ca5(CrO4)3O0.5 at temperature range of 800 and 1000 °C. The valence state of Cr in Ca5(CrO4)3O0.5 is determined to be +5 b y XPS analysis, and the color for new formed Cr(V) is observed in green, similar to Cr(III) compounds. The temperature and CaO are two keys to arouse the reduction reaction of Cr(VI) into Cr(V). In particular, the reduction of Cr(VI) into Cr(V) is strongly depended on temperature (800-1000 °C), this reaction can be balanced within 10 min, while prolonging sintering time has little help for promoting the reduction of Cr(VI) to Cr(V). Additionally, it was found Cr(V) can keep stable and not be re-oxidized into Cr(VI) at 800-1000 °C. Above results offers some new understanding and knowledge about the formation of Cr(V) in presence of much CaO or CaCO3 during heating solid waste containing Cr(VI).


Asunto(s)
Cromo/química , Eliminación de Residuos/métodos , Hidróxido de Calcio/química , Calefacción , Calor , Oxidación-Reducción , Residuos Sólidos , Temperatura
19.
Huan Jing Ke Xue ; 41(10): 4626-4635, 2020 Oct 08.
Artículo en Chino | MEDLINE | ID: mdl-33124395

RESUMEN

The degradation of emerging pollutant artificial sweetener sucralose (SUC) using UV/persulfate (UV/PS). The effects of several process parameters, including UV light intensity, PS dosage, pH, and anion concentration, were also investigated. The degradation products and their toxicity during the UV/PS process were further analyzed and evaluated. It is reported that, compared with single UV or PS, the degradation of SUC by UV/PS was more obvious. The degradation rate constants increased with an increase in the light intensity and PS dosage. The SUC degradation could be improved under neutral conditions. The background ions NO3- and HCO3- could inhibit the degradation process, while Cl- and SO42- ions could accelerate the process. Sixteen intermediate products were identified using high-resolution mass spectrometry (HRMS) and GC-MS. Hydroxylation, oxidation, ether cracking, and other reactions were involved. A degradation path was further proposed. Moreover, luminescent bacteria toxicity test and ECOSAR prediction showed that the intermediates with higher toxicity could be produced during UV/PS, which could pose a potential threat to the ecological environment.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Cinética , Oxidación-Reducción , Sacarosa/análogos & derivados , Sulfatos , Rayos Ultravioleta , Agua , Contaminantes Químicos del Agua/análisis
20.
Huan Jing Ke Xue ; 39(4): 1645-1653, 2018 Apr 08.
Artículo en Chino | MEDLINE | ID: mdl-29964989

RESUMEN

The by-products produced during chlorination of pharmaceutically active compounds (PhACs) have created widespread public concern. Chlorination of a typical PhAC, naproxen (NAP), was studied. NAP chlorination parameters, intermediates identification, chlorination mechanism, and risk assessment during chlorination process have also been discussed. The results showed that NAP chlorination could fit well with the fist-order kinetics. The rate of removal and rate constants of NAP chlorination decreased with increasing initial NAP concentration and ammonium dosage, while these values increased with increasing initial free chlorine concentration. Acidic condition of the solution could significantly promote NAP chlorination. Five intermediates were identified by HPLC-MS/MS, and the mechanism of NAP chlorination was also put forward. Vibrio fischeri toxicity analysis and ESCOAR prediction indicated that higher toxicity intermediates were produced during NAP chlorination, which pose a potential threat to drinking water safety.


Asunto(s)
Cloro/química , Naproxeno/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua , Halogenación , Cinética , Medición de Riesgo , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...