Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
1.
Cell Mol Immunol ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740925

RESUMEN

The NLRP3 inflammasome functions as an inflammatory driver, but its relationship with lipid metabolic changes in early sepsis remains unclear. Here, we found that GITR expression in monocytes/macrophages was induced by lysophosphatidylcholine (LPC) and was positively correlated with the severity of sepsis. GITR is a costimulatory molecule that is mainly expressed on T cells, but its function in macrophages is largely unknown. Our in vitro data showed that GITR enhanced LPC uptake by macrophages and specifically enhanced NLRP3 inflammasome-mediated macrophage pyroptosis. Furthermore, in vivo studies using either cecal ligation and puncture (CLP) or LPS-induced sepsis models demonstrated that LPC exacerbated sepsis severity/lethality, while conditional knockout of GITR in myeloid cells or NLRP3/caspase-1/IL-1ß deficiency attenuated sepsis severity/lethality. Mechanistically, GITR specifically enhanced inflammasome activation by regulating the posttranslational modification (PTM) of NLRP3. GITR competes with NLRP3 for binding to the E3 ligase MARCH7 and recruits MARCH7 to induce deacetylase SIRT2 degradation, leading to decreasing ubiquitination but increasing acetylation of NLRP3. Overall, these findings revealed a novel role of macrophage-derived GITR in regulating the PTM of NLRP3 and systemic inflammatory injury, suggesting that GITR may be a potential therapeutic target for sepsis and other inflammatory diseases. GITR exacerbates LPC-induced macrophage pyroptosis in sepsis via posttranslational regulation of NLRP3. According to the model, LPC levels increase during the early stage of sepsis, inducing GITR expression on macrophages. GITR not only competes with NLRP3 for binding to the E3 ligase MARCH7 but also recruits MARCH7 to induce the degradation of the deacetylase SIRT2, leading to decreasing ubiquitination but increasing acetylation of NLRP3 and therefore exacerbating LPC-induced NLRP3 inflammasome activation, macrophage pyroptosis and systemic inflammatory injury.

2.
Microbiol Spectr ; : e0015724, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38666897

RESUMEN

This article aims to study the value of cerebrospinal fluid (CSF) immunoglobulin in differential diagnosis, prediction, and prognosis of tuberculous meningitis (TBM). The clinical data of 65 patients with TBM in our hospital were collected, and 65 patients with cryptococcal meningitis (CM) were enrolled in 1:1 matching. Relevant data were collected for comparison. CSFs IgG [331.51 (164.85, 645.00) vs 129.00 (55.05, 251.00) ng/mL], IgM [22.38 (8.52, 40.18) vs 6.08 (2.19, 23.30) ng/mL], and IgA [64.11 (21.44, 115.48) vs 16.55 (4.76, 30.36) ng/mL] in the TBM group were higher than those in the CM group (P < 0.001). In the TBM group, after 24 weeks of treatment, the CSFs IgG, IgM, and IgA were significantly decreased, and the difference was statistically significant (P < 0.05). The predictive results of CSF immunoglobulin for TBM showed that IgG, IgM, and IgA all had some predictive value for TBM, and the combined predictive value of the three was the highest, with an area under the curve of 0.831 (95% CI: 0.774-0.881). Logistic regression analysis of CSF immunoglobulins and TBM prognosis showed that IgG [odds ratio (OR) = 4.796, 95% confidence interval (CI): 2.575-8.864], IgM (OR = 3.456, 95% CI: 2.757-5.754), and IgA (OR = 4.371, 95% CI: 2.731-5.856) were TBM risk factors for poor prognosis in patients. The levels of IgG, IgM, and IgA in CSF were positively correlated with the severity of cranial magnetic resonance imaging (MRI) in TBM patients (R2 = 0.542, F = 65.392, P < 0.05). CSFs IgG, IgM, and IgA can be used as a routine monitoring index for TBM patients, which has a certain reference value in differential diagnosis and efficacy evaluation. IMPORTANCE: In clinical practice, physicians can determine the physical conditions of patients based on the levels of cerebrospinal fluids (CSFs) IgG, IgM, and IgA. Higher levels of CSFs IgG, IgM, and IgA suggest more possibility of tuberculous meningitis and worse prognosis and magnetic resonance imaging manifestations.

3.
Pestic Biochem Physiol ; 201: 105884, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685250

RESUMEN

Botrytis cinerea is one of the most destructive pathogens worldwide. It can damage over 200 crops, resulting in significant yield and quality losses. Cyclobutrifluram, a new generation of succinate dehydrogenase inhibitors, exhibits excellent inhibitory activity against B. cinerea. However, the baseline sensitivity and resistance of B. cinerea to cyclobutrifluram remains poorly understood. This study was designed to monitor the sensitivity frequency distribution, assess the resistance risk, and clarify the resistance mechanism of B. cinerea to cyclobutrifluram. The baseline sensitivity of B. cinerea isolates to cyclobutrifluram was 0.89 µg/mL. Cyclobutrifluram-resistant B. cinerea populations are present in the field. Six resistant B. cinerea isolates investigated in this study possessed enhanced compound fitness index compared to the sensitive isolates according to mycelial growth, mycelial dry weight, conidiation, conidial germination rate, and pathogenicity. Cyclobutrifluram exhibited no cross-resistance with tebuconazole, fludioxonil, cyprodinil, or iprodione. Sequence alignment revealed that BcSDHB from cyclobutrifluram-resistant B. cinerea isolates had three single substitutions (P225F, N230I, or H272R). Molecular docking verified that these mutations in BcSDHB conferred cyclobutrifluram resistance in B. cinerea. In conclusion, the resistance risk of B. cinerea to cyclobutrifluram is high, and the point mutations in BcSDHB (P225F, N230I, or H272R) confer cyclobutrifluram resistance in B. cinerea. This study provided important insights into cyclobutrifluram resistance in B. cinerea and offered valuable information for monitoring and managing cyclobutrifluram resistance in the future.


Asunto(s)
Botrytis , Farmacorresistencia Fúngica , Fungicidas Industriales , Norbornanos , Mutación Puntual , Pirazoles , Botrytis/efectos de los fármacos , Botrytis/genética , Farmacorresistencia Fúngica/genética , Fungicidas Industriales/farmacología , China , Succinato Deshidrogenasa/genética , Proteínas Fúngicas/genética , Enfermedades de las Plantas/microbiología
4.
Natl Sci Rev ; 11(3): nwae039, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38549713

RESUMEN

Mitochondria undergo fission and fusion that are critical for cell survival and cancer development, while the regulatory factors for mitochondrial dynamics remain elusive. Herein we found that RNA m6A accelerated mitochondria fusion of colorectal cancer (CRC) cells. Metabolomics analysis and function studies indicated that m6A triggered the generation of glutathione (GSH) via the upregulation of RRM2B-a p53-inducible ribonucleotide reductase subunit with anti-reactive oxygen species potential. This in turn resulted in the mitochondria fusion of CRC cells. Mechanistically, m6A methylation of A1240 at 3'UTR of RRM2B increased its mRNA stability via binding with IGF2BP2. Similarly, m6A methylation of A2212 at the coding sequence (CDS) of OPA1-an essential GTPase protein for mitochondrial inner membrane fusion-also increased mRNA stability and triggered mitochondria fusion. Targeting m6A through the methyltransferase inhibitor STM2457 or the dm6ACRISPR system significantly suppressed mitochondria fusion. In vivo and clinical data confirmed the positive roles of the m6A/mitochondrial dynamics in tumor growth and CRC progression. Collectively, m6A promoted mitochondria fusion via induction of GSH synthesis and OPA1 expression, which facilitated cancer cell growth and CRC development.

5.
Front Microbiol ; 15: 1370417, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481793

RESUMEN

Introduction: African swine fever virus (ASFV) is a highly contagious virus that spreads rapidly and has a mortality rate of up to 100% in domestic pigs, leading to significant economic losses in the pig industry. The major capsid protein p72 of ASFV plays a critical role in viral invasion and immune evasion. Methods: In this study, we used yeast two-hybrid screening to identify host proteins interacting with p72 in porcine alveolar macrophages (PAMs) and verified these proteins using confocal microscopy and immunoprecipitation techniques. Results and Discussion: We validated 13 proteins that interact with p72, including CD63, B2M, YTHDF2, FTH1, SHFL, CDK5RAP3, VIM, PELO, TIMP2, PHYH, C1QC, CMAS, and ERCC1. Enrichment analysis and protein-protein interaction network analysis of these interacting proteins revealed their involvement in virus attachment, invasion, replication, assembly, and immune regulation. These findings provide new insights into the function of p72 and valuable information for future research on the interaction between ASFV and host proteins.

6.
ACS Nano ; 18(11): 8531-8545, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38456901

RESUMEN

Programmed death-ligand 1 (PD-L1) is a promising target for cancer immunotherapy due to its ability to inhibit T cell activation; however, its expression on various noncancer cells may cause on-target off-tumor toxicity when designing PD-L1-targeting Chimeric Antigen Receptor (CAR) T cell therapies. Combining rational design and directed evolution of the human fibronectin-derived monobody scaffold, "PDbody" was engineered to bind to PD-L1 with a preference for a slightly lower pH, which is typical in the tumor microenvironment. PDbody was further utilized as a CAR to target the PD-L1-expressing triple negative MDA-MB-231 breast cancer cell line. To mitigate on-target off-tumor toxicity associated with targeting PD-L1, a Cluster of Differentiation 19 (CD19)-recognizing SynNotch IF THEN gate was integrated into the system. This CD19-SynNotch PDbody-CAR system was then expressed in primary human T cells to target CD19-expressing MDA-MB-231 cancer cells. These CD19-SynNotch PDbody-CAR T cells demonstrated both specificity and efficacy in vitro, accurately eradicating cancer targets in cytotoxicity assays. Moreover, in an in vivo bilateral murine tumor model, they exhibited the capability to effectively restrain tumor growth. Overall, CD19-SynNotch PDbody-CAR T cells represent a distinct development over previously published designs due to their increased efficacy, proliferative capability, and mitigation of off-tumor toxicity for solid tumor treatment.


Asunto(s)
Antígeno B7-H1 , Receptores de Antígenos de Linfocitos T , Humanos , Ratones , Animales , Receptores de Antígenos de Linfocitos T/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Ligandos , Línea Celular Tumoral , Linfocitos T , Inmunoterapia Adoptiva
7.
Plants (Basel) ; 13(5)2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38475477

RESUMEN

Floral scent (FS) plays a crucial role in the ecological functions and industrial applications of plants. However, the physiological and metabolic mechanisms underlying FS formation remain inadequately explored. Our investigation focused on elucidating the differential formation mechanisms of 2-phenylethanol (2-PE) and benzyl alcohol (BA) by examining seven related enzyme concentrations and the content of soluble sugar, soluble proteins, carbon (C) and nitrogen (N), as well as the C/N ratio. The findings revealed that the peak content of 2-PE in M. 'Praire Rose' and BA in M. 'Lollipop' occurred during the end flowering stage (S4) and flowering stage (S3) periods, respectively. The enzyme concentration change trends of phenylpyruvate decarboxylase (PDL), phenylacetaldehyde reductase (PAR), soluble protein, C, N, and C/N ratio changes during the S3-S4 period in M. 'Praire Rose' and M. 'Lollipop' were entirely opposite. Correlation and PCA analysis demonstrated that the content of CYP79D73 (a P450) and N, and the C/N ratio were key factors in 2-PE production in M. 'Praire Rose'. The production of BA in M. 'Lollipop' was more influenced by the content of phenylacetaldehyde synthase (PAAS), CYP79D73, and soluble sugar. As CYP79D73 exits oppositely in correlation to 2-PE (M. 'Praire Rose') and BA (M. 'Lollipop'), it is hypothesized that CYP79D73 was postulated as the primary factor contributing to the observed differences of 2-PE (M. 'Praire Rose') and BA (M. 'Lollipop') formation. These results carry significant implications for crabapple aromatic flower breeding and the essential oil industry etc.

8.
Front Pharmacol ; 15: 1292828, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38449807

RESUMEN

Background: Based on real-world medical data, the artificial neural network model was used to predict the risk factors of linezolid-induced thrombocytopenia to provide a reference for better clinical use of this drug and achieve the timely prevention of adverse reactions. Methods: The artificial neural network algorithm was used to construct the prediction model of the risk factors of linezolid-induced thrombocytopenia and further evaluate the effectiveness of the artificial neural network model compared with the traditional Logistic regression model. Results: A total of 1,837 patients receiving linezolid treatment in a hospital in Xi 'an, Shaanxi Province from 1 January 2011 to 1 January 2021 were recruited. According to the exclusion criteria, 1,273 cases that did not meet the requirements of the study were excluded. A total of 564 valid cases were included in the study, with 89 (15.78%) having thrombocytopenia. The prediction accuracy of the artificial neural network model was 96.32%, and the AUROC was 0.944, which was significantly higher than that of the Logistic regression model, which was 86.14%, and the AUROC was 0.796. In the artificial neural network model, urea, platelet baseline value and serum albumin were among the top three important risk factors. Conclusion: The predictive performance of the artificial neural network model is better than that of the traditional Logistic regression model, and it can well predict the risk factors of linezolid-induced thrombocytopenia.

9.
Nat Commun ; 15(1): 1967, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438368

RESUMEN

Host-derived reactive oxygen species (ROS) are an important defense means to protect against pathogens. Although mitochondria are the main intracellular targets of ROS, how pathogens regulate mitochondrial physiology in response to oxidative stress remains elusive. Prohibitin 2 (PHB2) is an inner mitochondrial membrane (IMM) protein, recognized as a mitophagy receptor in animals and fungi. Here, we find that an ANK and FYVE domain-containing protein PsAF5, is an adapter of PsPHB2, interacting with PsATG8 under ROS stress. Unlike animal PHB2 that can recruit ATG8 directly to mitochondria, PsPHB2 in Phytophthora sojae cannot recruit PsATG8 to stressed mitochondria without PsAF5. PsAF5 deletion impairs mitophagy under ROS stress and increases the pathogen's sensitivity to H2O2, resulting in the attenuation of P. sojae virulence. This discovery of a PsPHB2-PsATG8 adapter (PsAF5) in plant-pathogenic oomycetes reveals that mitophagy induction by IMM proteins is conserved in eukaryotes, but with differences in the details of ATG8 recruitment.


Asunto(s)
Phytophthora , Animales , Peróxido de Hidrógeno , Mitofagia , Especies Reactivas de Oxígeno , Mitocondrias , Proteínas de la Membrana , Oligonucleótidos
10.
Pestic Biochem Physiol ; 198: 105719, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38225065

RESUMEN

The cucumber target spot, caused by Corynespora cassiicola, is a major cucumber disease in China. Mefentrifluconazole, a new triazole fungicide, exhibits remarkable efficacy in controlling cucumber target spot. However, the resistance risk and mechanism remain unclear. In this study, the inhibitory activity of mefentrifluconazole against 101 C. cassiicola isolates was determined, and the results indicated that the EC50 values ranged between 0.15 and 12.85 µg/mL, with a mean of 4.76 µg/mL. Fourteen mefentrifluconazole-resistant mutants of C. cassiicola were generated from six parental isolates in the laboratory through fungicide adaptation or UV irradiation. The resistance was relatively stable after ten consecutive transfers on a fungicide-free medium. No cross-resistance was observed between mefentrifluconazole and pyraclostrobin, fluopyram, prochloraz, mancozeb, or difenoconazole. Investigations into the biological characteristics of the resistant mutants revealed that six resistant mutants exhibited an enhanced compound fitness index (CFI) compared to the parental isolates, while others displayed a reduced or comparable CFI. The overexpression of CcCYP51A and CcCYP51B was detected in the resistant mutants, regardless of the presence or absence of mefentrifluconazole. Additionally, a two-way mixture of mefentrifluconazole and prochloraz at a concentration of 7:3 demonstrated superior control efficacy against the cucumber target spot, achieving a protection rate of 80%. In conclusion, this study suggests that the risk of C. cassiicola developing resistance to mefentrifluconazole is medium, and the overexpression of CcCYP51A and CcCYP51B might be associated with mefentrifluconazole resistance in C. cassiicola. The mefentrifluconazole and prochloraz two-way mixture presented promising control efficacy against the cucumber target spot.


Asunto(s)
Ascomicetos , Cucumis sativus , Fluconazol/análogos & derivados , Fungicidas Industriales , Imidazoles , Fungicidas Industriales/farmacología
11.
J Agric Food Chem ; 72(3): 1527-1538, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38193425

RESUMEN

An estimated 240 fungicides are presently in use, but the direct targets for the majority remain elusive, constraining fungicide development and efficient resistance monitoring. In this study, we found that Pcα-actinin knockout did not influence the sensitivity of Phytophthora capsici to fluopicolide, which is a notable oomycete inhibitor. Using a combination of Bulk Segregant Analysis Sequencing and Drug Affinity Responsive Target Stability (DARTS) assays, the vacuolar H+-ATPase subunit a (PcVHA-a) was pinpointed as the target protein of fluopicolide. We also confirmed four distinct point mutations in PcVHA-a responsible for fluopicolide resistance in P. capsici through site-directed mutagenesis. Molecular docking, ATPase activity assays, and a DARTS assay suggested a fluopicolide-PcVHA-a interaction. Sequence analysis and further molecular docking validated the specificity of fluopicolide for oomycetes or fish. These findings support the claim that PcVHA-a is the target of fluopicolide, proposing vacuolar H+-ATPase as a promising target for novel fungicide development.


Asunto(s)
Fungicidas Industriales , Phytophthora , Fungicidas Industriales/farmacología , Simulación del Acoplamiento Molecular , Benzamidas/metabolismo , Phytophthora/genética , ATPasas de Translocación de Protón/metabolismo , Enfermedades de las Plantas
12.
J Agric Food Chem ; 72(3): 1516-1526, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38194482

RESUMEN

Mefentrifluconazole, a triazole fungicide, exhibits remarkable efficacy in combating Fusarium spp. The mean EC50 value of mefentrifluconazole against 124 isolates of Fusarium pseudograminearum was determined to be 1.06 µg/mL in this study. Fungicide taming produced five mefentrifluconazole-resistant mutants with resistance factors ranging from 19.21 to 111.34. Compared to the original parental isolates, the fitness of three resistant mutants was much lower, while the remaining two mutants displayed enhanced survival fitness. There was evidence of positive cross-resistance between tebuconazole and mefentrifluconazole. Mefentrifluconazole resistance in F. pseudograminearum can be conferred by FpCYP51BL144F, which was identified in four mutants according to molecular docking and site-directed transformation experiments. Overexpression of FpCYP51s was also detected in the resistant mutants. In conclusion, mefentrifluconazole has a low-to-medium resistance risk in F. pseudograminearum, and the L144F mutation in FpCYP51B and the increased expression level of FpCYP51s may be responsible for mefentrifluconazole resistance in F. pseudograminearum.


Asunto(s)
Fluconazol/análogos & derivados , Fungicidas Industriales , Fusarium , Fusarium/genética , Mutación Puntual , Simulación del Acoplamiento Molecular , Enfermedades de las Plantas
13.
Ecotoxicol Environ Saf ; 270: 115921, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38183749

RESUMEN

Toxic Microcystis blooms are widespread in aquatic bodies, posing major threats to aquatic and human life. Recently, bioflocculants have attracted considerable attention as a promising biomaterial for Microcystis management. In search of a novel organism that can produce an efficient bioflocculant for controlling harmful algae sustainably, the native gastropod Cipangopaludina chinensis was co-cultured continuously with toxic Microcystis under different initial algal cell densities. The bioflocculation effect of snail mucus on toxic Microcystis, microcystin removal, and toxin accumulation in snails was investigated. In addition, the properties of the adhesive mucus were characterized using microscopic, X-ray diffraction, infrared spectroscopy, and polysaccharide and proteome analyses. Microcystis cells were captured and flocculated by the snail mucus; removal efficiencies of up to 89.9% and 84.8% were achieved for microalgae and microcystin-leucine arginine (MC-LR), respectively, when co-cultured with C. chinensis for only one day. After nine-day exposure, less than 5.49 µg/kg DW microcystins accumulated in the snails, indicating safety for human consumption. The snail mucus contained 104.3 µg/mg protein and 72.7 µg/mg carbohydrate, which provide several functional groups beneficial for Microcystis bioflocculation. The main monosaccharide subunits of polysaccharides are galactose, galactosamine, glucosamine, fucose, glucose, and mannose. Most of them are key components of polysaccharides in many bioflocculants. Gene Ontology analysis indicated the protein enrichment in binding processes and catalytic activity, which may account for Microcystis bioflocculation via protein binding or enzymatic reactions. The findings indicate that native C. chinensis secretes adhesive mucus that can act as bioflocculant for toxic Microcystis from ambient water and can be an effective and eco-friendly tool for Microcystis suppression.


Asunto(s)
Floraciones de Algas Nocivas , Microcystis , Humanos , Microcistinas/toxicidad , Glucosa/metabolismo , Alimentos , Polisacáridos/metabolismo
14.
Am J Nephrol ; 55(1): 86-105, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37734331

RESUMEN

INTRODUCTION: Di(2-ethylhexyl) phthalate (DEHP) is a common plasticizer. Studies have revealed that DEHP exposure can cause kidney damage. Green tea is among the most popular beverages in China. Green tea polyphenols (GTPs) have been proven to have therapeutic effects on organ damage induced by heavy metal exposure. However, few studies have reported on GTP-relieving DEHP-induced kidney damage. METHODS: C57BL/6J male mice aged 6-8 weeks were treated with distilled water (control group), 1,500 mg/kg/d DEHP + corn oil (model group), 1,500 mg/kg/d DEHP + corn oil + 70 mg/kg GTP (treatment group), corn oil (oil group), and 70 mg/kg GTP (GTP group) by gavage for 8 weeks, respectively. The renal function of mice and renal tissue histopathology of each group were evaluated. The renal tissues of mice in the model, treatment, and control groups were analyzed using high-throughput sequencing. We calculated the differentially expressed microRNAs (miRNAs) and messenger RNAs (mRNAs) using the limma R package, the CIBERSORT algorithm was used to predict immune infiltration, the starBase database was used to screen the miRNA-mRNA regulatory axis, and immunohistochemical analyses were performed to verify protein expression. RESULTS: GTP alleviated the deterioration of renal function, renal inflammation and fibrosis, and mitochondrial and endoplasmic reticulum lesions induced by DEHP in mice. Differential immune infiltrations of plasma, dendritic, T, and B cells were noted between the model and treatment groups. We found that three differentially expressed miRNAs (mmu-miR-383-5p, mmu-miR-152-3p, and mmu-miR-144-3p), three differentially expressed mRNAs (Ddit4, Dusp1, and Snx18), and three differentially expressed proteins (Ddit4, Dusp1, and Snx18) played crucial roles in the miRNA-mRNA-protein regulatory axes when GTPs mitigate DEHP-induced kidney damage in mice. CONCLUSION: GTP can alleviate DEHP-induced kidney damage and regulate immune cell infiltration. We screened four important miRNA-mRNA-protein regulatory axes of GTP, mitigating DEHP-induced kidney damage in mice.


Asunto(s)
Dietilhexil Ftalato , MicroARNs , Ácidos Ftálicos , Animales , Ratones , Masculino , Dietilhexil Ftalato/toxicidad , Aceite de Maíz/farmacología , Ratones Endogámicos C57BL , Antioxidantes , Riñón , MicroARNs/genética , MicroARNs/farmacología , ARN Mensajero , Polifenoles/farmacología , Polifenoles/uso terapéutico , Guanosina Trifosfato/farmacología
15.
Pest Manag Sci ; 80(4): 1802-1811, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38029343

RESUMEN

BACKGROUND: Brown rot disease, caused by Monilinia fructicola, poses a significant challenge to peach production in China. The efficacy of mefentrifluconazole, a new triazole fungicide, in controlling brown rot in peaches has been remarkable. However, the resistance risk and mechanism associated with this fungicide remain unclear. This study was designed to assess the resistance risk of M. fructicola to mefentrifluconazole and reveal the potential resistance mechanism. RESULTS: The mean median effective concentration (EC50 ) of 101 M. fructicola isolates to mefentrifluconazole was 0.003 µg mL-1 , and the sensitivity exhibited a unimodal distribution. Seven mefentrifluconazole-resistant mutants were generated from three parental isolates in the laboratory through fungicide adaption. The biological characteristics of the resistant mutants revealed that three of them exhibited enhanced survival fitness compared to the parental isolates, whereas the remaining four mutants displayed reduced survival fitness. Mefentrifluconazole showed strong positive cross-resistance with fenbuconazole, whereas no cross-resistance was observed with pyrimethanil, procymidone or pydiflumetofen. No overexpression of MfCYP51 gene was detected in the resistant mutants. Multiple sequence alignment revealed that three resistant mutants (MXSB2-2, Mf12-1 and Mf12-2) had a point mutation (G461S) in MfCYP51 protein. Molecular docking techniques confirmed the contribution of this point mutation to mefentrifluconazole resistance. CONCLUSION: The risk of M. fructicola developing resistance to mefentrifluconazole is relatively low-to-medium and point mutation G461S in MfCYP51 could confer mefentrifluconazole resistance in M. fructicola. This study provided essential data for monitoring the emergence of resistance and developing resistance management strategies for mefentrifluconazole. © 2023 Society of Chemical Industry.


Asunto(s)
Ascomicetos , Fluconazol/análogos & derivados , Fungicidas Industriales , Prunus persica , Fungicidas Industriales/farmacología , Simulación del Acoplamiento Molecular , Medición de Riesgo
16.
J Mol Cell Cardiol ; 186: 57-70, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37984156

RESUMEN

BACKGROUND: Macrophage-derived foam cells are a hallmark of atherosclerosis. Scavenger receptors, including lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (OLR-1), are the principal receptors responsible for the uptake and modification of LDL, facilitating macrophage lipid load and the uptake of oxidized LDL by arterial wall cells. Krüppel-like factor 15 (KLF15) is a transcription factor that regulates the expression of genes by binding to the promoter during transcription. Therefore, this study aimed to investigate the precise role of macrophage KLF15 in atherogenesis. METHODS: We used two murine models of atherosclerosis: mice injected with an adeno-associated virus (AAV) encoding the Asp374-to-Tyr mutant version of human PCSK9, followed by 12 weeks on a high-fat diet (HFD), and ApoE-/-- mice on a HFD. We subsequently injected mice with AAV-KLF15 and AAV-LacZ to assess the role of KLF15 in the development of atherosclerosis in vivo. Oil Red O, H&E, and Masson's trichome staining were used to evaluate atherosclerotic lesions. Western blots and RT-qPCR were used to assess protein and mRNA levels, respectively. RESULTS: We determined that KLF15 expression was downregulated during atherosclerosis formation, and KLF15 overexpression prevented atherosclerosis progression. KLF15 expression levels did not affect body weight or serum lipid levels in mice. However, KLF15 overexpression in macrophages prevented foam cell formation by reducing OLR-1-meditated lipid uptake. KLF15 directly targeted and transcriptionally downregulated OLR-1 levels. Restoration of OLR-1 reversed the beneficial effects of KLF15 in atherosclerosis. CONCLUSION: Macrophage KLF15 transcriptionally downregulated OLR-1 expression to reduce lipid uptake, thereby preventing foam cell formation and atherosclerosis. Thus, our results suggest that KLF15 is a potential therapeutic target for atherosclerosis.


Asunto(s)
Aterosclerosis , Células Espumosas , Humanos , Ratones , Animales , Células Espumosas/metabolismo , Proproteína Convertasa 9/metabolismo , Macrófagos/metabolismo , Aterosclerosis/patología , Lipoproteínas LDL/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo
17.
Vaccine ; 42(2): 175-185, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38103966

RESUMEN

OBJECTIVES: To investigate factors that may influence humoral immunity post-vaccination with a COVID-19-inactivated vaccine (SC2IV). METHODS: A total of 1596 healthy individuals from the Seventh Affiliated Hospital, Sun Yat-sen University (1217) and Shenzhen Baotian Hospital (379) were enrolled in this study among which 694 and 218 participants were vaccinated with two-dose SC2IV, respectively. Physical examination indices were recorded. The levels of neutralizing antibody (NA), Spike IgG, receptor-binding domain (RBD) IgG, RBD IgG + IgM + IgA, and nucleocapsid IgG of SARS-CoV-2 were measured by a non-virus ELISA kit. Multiple statistical analyses were carried out to identify factors that influence humoral immunity post-vaccination. RESULTS: The two-dosage vaccination could induce NA in more than 90 % of recipients. The NA has the strongest correlation with anti-RBD IgG. Age is the most important independent index that affects the NA level, while basophil count, creatine kinase-MB, mean corpuscular hemoglobin, the ratio of albumin to urine creatinine, and thyroglobulin antibody have relatively minor contributions. Indices that affect the NA level were different between males and females. Antibodies targeting other epitopes of SARS-CoV-2 were detected in recipients without anti-RBD. CONCLUSIONS: The factors identified in association with the NA level post-vaccination may help to evaluate the protective effect, risk of re-infection, the severity of symptoms, and prognosis for vaccine recipients in clinical.


Asunto(s)
COVID-19 , Inmunidad Humoral , Femenino , Masculino , Humanos , SARS-CoV-2 , COVID-19/prevención & control , Vacunación , Anticuerpos Neutralizantes , Vacunas contra la COVID-19 , Inmunoglobulina G , Anticuerpos Antivirales
18.
J Agric Food Chem ; 72(1): 219-229, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38131297

RESUMEN

In this study, we determined the sensitivity of 148 Phytophthora litchii isolates to cyazofamid, yielding a mean EC50 value of 0.0091 ± 0.0028 µg/mL. Through fungicide adaptation, resistant mutants (RMs) carrying the F220L substitution in PlCyt b were derived from wild-type isolates. Notably, these RMs exhibited a lower fitness compared with the parental isolates. Molecular docking analysis further revealed that the F220L change contributed to a decrease in the binding energy between cyazofamid and PlCyt b. The total phenol and flavonoid contents in the litchi pericarp treated with cyazofamid on day 5 were significantly higher than in other treatments. Overall, the laboratory assessment indicated a moderate risk of cyazofamid resistance in P. litchii, but the emergence of the F220L change could lead to a high level of resistance. Thus, cyazofamid represents a promising agrochemical for controlling postharvest litchi downy blight and extending the shelf life of litchi fruits.


Asunto(s)
Litchi , Phytophthora , Litchi/genética , Litchi/metabolismo , Frutas , Simulación del Acoplamiento Molecular
19.
Plants (Basel) ; 12(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38068584

RESUMEN

Floral scent (FS) plays a pivotal role in maintaining ecological equilibrium within plant populations and ecosystems while also bearing significance for human well-being. Despite the growing interest in FS research, there exists a dearth of comprehensive analyses on research trends, contemporary topics, and their broader implications. In this study, we employ bibliometric techniques using data from the Web of Science Core Collection spanning 1987-2022 to offer a quantitative overview of the scientific literature surrounding FS by examining the annual publication outputs, popular research areas, temporal trends in keywords, geographic distribution of relevant studies, institutions, co-organizations, as well as relevant authors. Our findings reveal a marked upsurge in FS publications, notably within the domains of Food Science Technology, Plant Sciences, Chemistry, Agriculture, Biochemistry, and Molecular Biology. The research landscape in FS primarily encompasses evolutionary dynamics, volatile compound analyses, biosynthesis mechanisms, and essential oil properties. These research trends signify a transition from micro-level exploration, focusing on individual pollination ecological functions of FS, to a macro-perspective that emphasizes FS's overarching impact on species diversity and ecosystem stability. This shift extends from the investigation of singular sensory attributes of FS to a holistic evaluation of their role in food production, quality, and yield enhancement. It encompasses a move away from mere FS extraction towards the examination of antioxidant potential within phenolic compounds and other industrial applications. Thus, improving research methodologies, strengthening interdisciplinary collaboration on an international scale, and delving deeper into the multifaceted ecological functions of floral diversity and their societal implications will be paramount.

20.
Curr Protoc ; 3(12): e947, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38054948

RESUMEN

The SIMBA (Simultaneous Imaging and Manipulation of genomic loci by Biomolecular Assemblies) system is an innovative CRISPR-based imaging technique that leverages dCas9-SunTag and FRB-mCherry-HP1α, with scFv-FKBP acting as a bridge. This powerful system enables simultaneous visualization and manipulation of genomic loci. The dCas9-SunTag fusion protein allows for precise targeting of specific genomic sites, and the FRB-mCherry-HP1α fusion protein facilitates the condensation of chromatin at the targeted loci. The scFv-FKBP bridge protein links dCas9-SunTag and FRB-mCherry-HP1α, ensuring efficient and specific recruitment of HP1α to the desired genomic loci. This integrated approach allows us to visualize and manipulate genomic regions of interest, opening up new avenues for studying genome organization, gene expression regulation, and chromatin dynamics in living cells. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Cloning of genetic constructs Basic Protocol 2: Transient transfection in mammalian cells and live-cell imaging Basic Protocol 3: Generation of SIMBA-expressing stable cell lines Basic Protocol 4: Manipulation of genomic loci using SIMBA.


Asunto(s)
Genómica , Etiquetado de Productos , Animales , Cromatina/genética , Homólogo de la Proteína Chromobox 5 , Factores de Transcripción , Proteínas de Unión a Tacrolimus , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...