Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 201: 107799, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37271022

RESUMEN

Storing postharvest ginger at low temperatures can extend its shelf life, but can also lead to chilling injury, loss of flavor, and excessive water loss. To investigate the effects of chilling stress on ginger quality, morphological, physiological, and transcriptomic changes were examined after storage at 26 °C, 10 °C, and 2 °C for 24 h. Compared to 26 °C and 10 °C, storage at 2 °C significantly increased the concentrations of lignin, soluble sugar, flavonoids, and phenolics, as well as the accumulation of H2O2, O2-, and thiobarbituric acid reactive substances (TBARS). Additionally, chilling stress inhibited the levels of indoleacetic acid, while enhancing gibberellin, abscisic acid, and jasmonic acid, which may have increased postharvest ginger's adaptation to chilling. Storage at 10 °C decreased lignin concentration and oxidative damage, and induced less fluctuant changes in enzymes and hormones than storage at 2 °C. RNA-seq revealed that the number of differentially expressed genes (DEGs) increased with decreasing temperature. Functional enrichment analysis of the 523 DEGs that exhibited similar expression patterns between all treatments indicated that they were primarily enriched in phytohormone signaling, biosynthesis of secondary metabolites, and cold-associated MAPK signaling pathways. Key enzymes related to 6-gingerol and curcumin biosynthesis were downregulated at 2 °C, suggesting that cold storage may negatively impact ginger quality. Additionally, 2 °C activated the MKK4/5-MPK3/6-related protein kinase pathway, indicating that chilling may increase the risk of ginger pathogenesis.


Asunto(s)
Transcriptoma , Zingiber officinale , Zingiber officinale/genética , Peróxido de Hidrógeno , Lignina , Hormonas
2.
Ying Yong Sheng Tai Xue Bao ; 34(3): 825-834, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37087667

RESUMEN

The development and application of botanical insecticides is important for the sustainable development of green agriculture. The abuse of chemical pesticides has caused serious problems of environment and human health. Botanical insecticides have become an environment-friendly insecticides due to their nature, low toxicity, easy degradation and other advantages, which are an important field of insecticide development in the future. Although botanical insecticides have lots of advantages, there are still problems needed to be resolved, such as insecticidal plant species, impact assessment of botanical pesticide and separation and purification of active components. To excavate the resources of highly effective insecticidal plants and understand the mechanism of botanical insecticides, here we reviewed the progress of resources and active components of botanical insecticides, the mechanisms of action of botanical insecticides, the main active components and insecticidal properties of Zingiber officinale. Finally, we analyzed the difficulties faced in the research and development of botanical insecticides, prospected future directions, and discussed the active components of ginger. This review would provide reference for the deve-lopment of new botanical insecticides.


Asunto(s)
Insecticidas , Plaguicidas , Zingiber officinale , Humanos , Insecticidas/toxicidad , Insecticidas/química , Plantas , Agricultura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...