Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Res ; 25(9): 1025-42, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26215701

RESUMEN

Hypoxia-inducible factors (HIFs) are master regulators of adaptive responses to low oxygen, and their α-subunits are rapidly degraded through the ubiquitination-dependent proteasomal pathway after hydroxylation. Aberrant accumulation or activation of HIFs is closely linked to many types of cancer. However, how hydroxylation of HIFα and its delivery to the ubiquitination machinery are regulated remains unclear. Here we show that Rho-related BTB domain-containing protein 3 (RHOBTB3) directly interacts with the hydroxylase PHD2 to promote HIFα hydroxylation. RHOBTB3 also directly interacts with the von Hippel-Lindau (VHL) protein, a component of the E3 ubiquitin ligase complex, facilitating ubiquitination of HIFα. Remarkably, RHOBTB3 dimerizes with LIMD1, and constructs a RHOBTB3/LIMD1-PHD2-VHL-HIFα complex to effect the maximal degradation of HIFα. Hypoxia reduces the RHOBTB3-centered complex formation, resulting in an accumulation of HIFα. Importantly, the expression level of RHOBTB3 is greatly reduced in human renal carcinomas, and RHOBTB3 deficiency significantly elevates the Warburg effect and accelerates xenograft growth. Our work thus reveals that RHOBTB3 serves as a scaffold to organize a multi-subunit complex that promotes the hydroxylation, ubiquitination and degradation of HIFα.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/terapia , Células Cultivadas , Cobalto/farmacología , Regulación hacia Abajo/efectos de los fármacos , Células HEK293 , Humanos , Hidroxilación , Prolina Dioxigenasas del Factor Inducible por Hipoxia/antagonistas & inhibidores , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Neoplasias Renales/terapia , Proteínas con Dominio LIM/antagonistas & inhibidores , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Ratones Desnudos , Unión Proteica , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/uso terapéutico , Trasplante Heterólogo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/química , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Proteínas de Unión al GTP rho/antagonistas & inhibidores , Proteínas de Unión al GTP rho/genética
2.
Cell Metab ; 20(3): 526-40, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25002183

RESUMEN

AMPK and mTOR play principal roles in governing metabolic programs; however, mechanisms underlying the coordination of the two inversely regulated kinases remain unclear. In this study we found, most surprisingly, that the late endosomal/lysosomal protein complex v-ATPase-Ragulator, essential for activation of mTORC1, is also required for AMPK activation. We also uncovered that AMPK is a residential protein of late endosome/lysosome. Under glucose starvation, the v-ATPase-Ragulator complex is accessible to AXIN/LKB1 for AMPK activation. Concurrently, the guanine nucleotide exchange factor (GEF) activity of Ragulator toward RAG is inhibited by AXIN, causing dissociation from endosome and inactivation of mTORC1. We have thus revealed that the v-ATPase-Ragulator complex is also an initiating sensor for energy stress and meanwhile serves as an endosomal docking site for LKB1-mediated AMPK activation by forming the v-ATPase-Ragulator-AXIN/LKB1-AMPK complex, thereby providing a switch between catabolism and anabolism. Our current study also emphasizes a general role of late endosome/lysosome in controlling metabolic programs.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteína Axina/metabolismo , Línea Celular , Endosomas/metabolismo , Activación Enzimática , Glucosa/metabolismo , Células HEK293 , Humanos , Lisosomas/enzimología , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Inanición
3.
Cell Metab ; 18(4): 546-55, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24093678

RESUMEN

The AMP-activated protein kinase (AMPK) is a master regulator of metabolic homeostasis by sensing cellular energy status. AMPK is mainly activated via phosphorylation by LKB1 when cellular AMP/ADP levels are increased. However, how AMP/ADP brings about AMPK phosphorylation remains unclear. Here, we show that it is AMP, but not ADP, that drives AXIN to directly tether LKB1 to phosphorylate AMPK. The complex formation of AXIN-AMPK-LKB1 is greatly enhanced in glucose-starved or AICAR-treated cells and in cell-free systems supplemented with exogenous AMP. Depletion of AXIN abrogated starvation-induced AMPK-LKB1 colocalization. Importantly, adenovirus-based knockdown of AXIN in the mouse liver impaired AMPK activation and caused exacerbated fatty liver after starvation, underscoring an essential role of AXIN in AMPK activation. These findings demonstrate an initiating role of AMP and demonstrate that AXIN directly transmits AMP binding of AMPK to its activation by LKB1, uncovering the mechanistic route for AMP to elicit AMPK activation by LKB1.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Monofosfato/farmacología , Proteína Axina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/deficiencia , Proteínas Quinasas Activadas por AMP/genética , Acetil-CoA Carboxilasa/metabolismo , Adenosina Monofosfato/metabolismo , Animales , Proteína Axina/antagonistas & inhibidores , Proteína Axina/genética , Línea Celular , Sistema Libre de Células , Activación Enzimática , Células HEK293 , Humanos , Metabolismo de los Lípidos/fisiología , Hígado/citología , Hígado/metabolismo , Ratones , Ratones Endogámicos BALB C , Fosforilación/efectos de los fármacos , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA