Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(14): e2321615121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38530892

RESUMEN

Polymethoxyflavones (PMFs) are a class of abundant specialized metabolites with remarkable anticancer properties in citrus. Multiple methoxy groups in PMFs are derived from methylation modification catalyzed by a series of hydroxylases and O-methyltransferases (OMTs). However, the specific OMTs that catalyze the systematic O-methylation of hydroxyflavones remain largely unknown. Here, we report that PMFs are highly accumulated in wild mandarins and mandarin-derived accessions, while undetectable in early-diverging citrus species and related species. Our results demonstrated that three homologous genes, CreOMT3, CreOMT4, and CreOMT5, are crucial for PMF biosynthesis in citrus, and their encoded methyltransferases exhibit multisite O-methylation activities for hydroxyflavones, producing seven PMFs in vitro and in vivo. Comparative genomic and syntenic analyses indicated that the tandem CreOMT3, CreOMT4, and CreOMT5 may be duplicated from CreOMT6 and contributes to the genetic basis of PMF biosynthesis in the mandarin group through neofunctionalization. We also demonstrated that N17 in CreOMT4 is an essential amino acid residue for C3-, C5-, C6-, and C3'-O-methylation activity and provided a rationale for the functional deficiency of OMT6 to produce PMFs in early-diverging citrus and some domesticated citrus species. A 1,041-bp deletion in the CreOMT4 promoter, which is found in most modern cultivated mandarins, has reduced the PMF content relative to that in wild and early-admixture mandarins. This study provides a framework for reconstructing PMF biosynthetic pathways, which may facilitate the breeding of citrus fruits with enhanced health benefits.


Asunto(s)
Citrus , Citrus/química , Domesticación , Fitomejoramiento , Metilación , Metiltransferasas/metabolismo
2.
Plant Sci ; 326: 111509, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36283579

RESUMEN

Grafting can improve the salt tolerance of many crops. However, critical genes in scions responsive to rootstock under salt stress remain a mystery. We found that pumpkin rootstock decreased the content of Na+ by 70.24 %, increased the content of K+ by 25.9 %, and increased the K+/Na+ ratio by 366.0 % in cucumber scion leaves. RNA-seq analysis showed that ion transport-related genes were the key genes involved in salt stress tolerance in grafted cucumber. The identification and analysis of the expression of K+ transporter proteins in cucumber and pumpkin revealed six and five HAK5 members, respectively. The expression of CsHAK5;3 in cucumber was elevated in different graft combinations under salt stress and most notably in cucumber scion/pumpkin rootstock. CsHAK5;3 was localized to the plasma membrane, and a yeast complementation assay revealed that it can transport K+. CsHAK5;3 knockout in hairy root mutants decreased the K+ content of leaves (45.6 %) and roots (50.3 %), increased the Na+ content of leaves (29.3 %) and roots (34.8 %), and decreased the K+/Na+ ratio of the leaves (57.9 %) and roots (62.9 %) in cucumber. However, CsHAK5;3 overexpression in hairy roots increased the K+ content of the leaves (31.2 %) and roots (38.3 %), decreased the Na+ content of leaves (17.2 %) and roots (14.3 %), and increased the K+/Na+ ratio of leaves (58.9 %) and roots (61.6 %) in cucumber. In conclusion, CsHAK5;3 in cucumber can mediate K+ transport and is one of the key target pumpkin genes that enhance salt tolerance of cucumber grafted.


Asunto(s)
Cucumis sativus , Cucurbita , Cucumis sativus/genética , Cucumis sativus/metabolismo , Tolerancia a la Sal/genética , Raíces de Plantas/metabolismo , Cucurbita/genética , Perfilación de la Expresión Génica , Sodio/metabolismo
3.
Comput Methods Programs Biomed ; 209: 106361, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34454209

RESUMEN

BACKGROUND AND OBJECTIVE: Radiofrequency thermocoagulation is an effective method for treating classic trigeminal neuralgia. However, the accurate positioning of thermocoagulation is difficult. The purpose of this study was to design an optimal strategy for performing adjuvant surgery. METHODS: A total of 60 patients with trigeminal neuralgia were divided into two groups. One group received conventional computed tomography (CT) guided treatment (CT group). In the other group, neural fiber bundles were firstly extracted based on the Hamilton-Jacobi equation. Then, the MRI, CT, and fiber bundle images were fused to visualize the relationship among semilunar ganglion, trigeminal nerve, and puncture needle (fusion group). RESULTS: Trigeminal fiber bundles were extracted quickly by the contour tracking method, and different types of image fusion were realized for radiofrequency surgery navigation. In the fusion group, 13.3% of patients could not reach semilunar ganglion, and 76.9% of the remaining cases reached the ideal damage area. In the CT group, the preoperative design shows that 26.7% of patients may have puncture difficulty, and 54.5% of remaining cases reached the ideal damage area. CONCLUSION: The technique of neural bundle extraction and image fusion based on the Hamilton-Jacobi equation can be used to plan the personalized puncture path targeting the semilunar ganglion.


Asunto(s)
Cirugía Asistida por Computador , Neuralgia del Trigémino , Electrocoagulación , Humanos , Resultado del Tratamiento , Ganglio del Trigémino , Nervio Trigémino , Neuralgia del Trigémino/diagnóstico por imagen , Neuralgia del Trigémino/cirugía
4.
J Exp Bot ; 70(20): 5879-5893, 2019 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-31290978

RESUMEN

Potassium (K+) is a critical determinant of salinity tolerance, and H2O2 has been recognized as an important signaling molecule that mediates many physiological responses. However, the details of how H2O2 signaling regulates K+ uptake in the root under salt stress remain elusive. In this study, salt-sensitive cucumber and salt-tolerant pumpkin which belong to the same family, Cucurbitaceae, were used to answer the above question. We show that higher salt tolerance in pumpkin was related to its superior ability for K+ uptake and higher H2O2 accumulation in the root apex. Transcriptome analysis showed that salinity induced 5816 (3005 up- and 2811 down-) and 4679 (3965 up- and 714 down-) differentially expressed genes (DEGs) in cucumber and pumpkin, respectively. DEGs encoding NADPH oxidase (respiratory burst oxidase homolog D; RBOHD), 14-3-3 protein (GRF12), plasma membrane H+-ATPase (AHA1), and potassium transporter (HAK5) showed higher expression in pumpkin than in cucumber under salinity stress. Treatment with the NADPH oxidase inhibitor diphenylene iodonium resulted in lower RBOHD, GRF12, AHA1, and HAK5 expression, reduced plasma membrane H+-ATPase activity, and lower K+ uptake, leading to a loss of the salinity tolerance trait in pumpkin. The opposite results were obtained when the plants were pre-treated with exogenous H2O2. Knocking out of RBOHD in pumpkin by CRISPR/Cas9 [clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9] editing of coding sequences resulted in lower root apex H2O2 and K+ content and GRF12, AHA1, and HAK5 expression, ultimately resulting in a salt-sensitive phenotype. However, ectopic expression of pumpkin RBOHD in Arabidopsis led to the opposite effect. Taken together, this study shows that RBOHD-dependent H2O2 signaling in the root apex is important for pumpkin salt tolerance and suggests a novel mechanism that confers this trait, namely RBOHD-mediated transcriptional and post-translational activation of plasma membrane H+-ATPase operating upstream of HAK5 K+ uptake transporters.


Asunto(s)
Membrana Celular/metabolismo , Cucurbitaceae/metabolismo , Potasio/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Membrana Celular/efectos de los fármacos , Cucurbita/efectos de los fármacos , Cucurbita/metabolismo , Cucurbitaceae/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , NADPH Oxidasas/antagonistas & inhibidores , NADPH Oxidasas/metabolismo , Compuestos Onio/farmacología , Especies Reactivas de Oxígeno/metabolismo , Tolerancia a la Sal/genética , Tolerancia a la Sal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...