Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Atmos ; 19(227): 1-13, 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37590244

RESUMEN

Reduced-form modeling approaches are an increasingly popular way to rapidly estimate air quality and human health impacts related to changes in air pollutant emissions. These approaches reduce computation time by making simplifying assumptions about pollutant source characteristics, transport and chemistry. Two reduced form tools used by the Environmental Protection Agency in recent assessments are source apportionment-based benefit per ton (SA BPT) and source apportionment-based air quality surfaces (SABAQS). In this work, we apply these two reduced form tools to predict changes in ambient summer-season ozone, ambient annual PM2.5 component species and monetized health benefits for multiple sector-specific emission control scenarios: on-road mobile, electricity generating units (EGUs), cement kilns, petroleum refineries, and pulp and paper facilities. We then compare results against photochemical grid and standard health model-based estimates. We additionally compare monetized PM2.5 health benefits to values derived from three reduced form tools available in the literature: the Intervention Model for Air Pollution (InMAP), Air Pollution Emission Experiments and Policy Analysis (APEEP) version 2 (AP2) and Estimating Air pollution Social Impact Using Regression (EASIUR). Ozone and PM2.5 changes derived from SABAQS for EGU scenarios were well-correlated with values obtained from photochemical modeling simulations with spatial correlation coefficients between 0.64 and 0.89 for ozone and between 0.75 and 0.94 for PM2.5. SABAQS ambient ozone and PM2.5 bias when compared to photochemical modeling predictions varied by emissions scenario: SABAQS PM2.5 changes were overpredicted by up to 46% in one scenario and underpredicted by up to 19% in another scenario; SABAQS seasonal ozone changes were overpredicted by 34% to 83%. All tools predicted total PM2.5 benefits within a factor of 2 of the full-form predictions consistent with intercomparisons of reduced form tools available in the literature. As reduced form tools evolve, it is important to continue periodic comparison with comprehensive models to identify systematic biases in estimating air pollution impacts and resulting monetized health benefits.

2.
Environ Sci Technol ; 57(29): 10708-10720, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37437161

RESUMEN

Particulate matter air pollution is a leading cause of global mortality, particularly in Asia and Africa. Addressing the high and wide-ranging air pollution levels requires ambient monitoring, but many low- and middle-income countries (LMICs) remain scarcely monitored. To address these data gaps, recent studies have utilized low-cost sensors. These sensors have varied performance, and little literature exists about sensor intercomparison in Africa. By colocating 2 QuantAQ Modulair-PM, 2 PurpleAir PA-II SD, and 16 Clarity Node-S Generation II monitors with a reference-grade Teledyne monitor in Accra, Ghana, we present the first intercomparisons of different brands of low-cost sensors in Africa, demonstrating that each type of low-cost sensor PM2.5 is strongly correlated with reference PM2.5, but biased high for ambient mixture of sources found in Accra. When compared to a reference monitor, the QuantAQ Modulair-PM has the lowest mean absolute error at 3.04 µg/m3, followed by PurpleAir PA-II (4.54 µg/m3) and Clarity Node-S (13.68 µg/m3). We also compare the usage of 4 statistical or machine learning models (Multiple Linear Regression, Random Forest, Gaussian Mixture Regression, and XGBoost) to correct low-cost sensors data, and find that XGBoost performs the best in testing (R2: 0.97, 0.94, 0.96; mean absolute error: 0.56, 0.80, and 0.68 µg/m3 for PurpleAir PA-II, Clarity Node-S, and Modulair-PM, respectively), but tree-based models do not perform well when correcting data outside the range of the colocation training. Therefore, we used Gaussian Mixture Regression to correct data from the network of 17 Clarity Node-S monitors deployed around Accra, Ghana, from 2018 to 2021. We find that the network daily average PM2.5 concentration in Accra is 23.4 µg/m3, which is 1.6 times the World Health Organization Daily PM2.5 guideline of 15 µg/m3. While this level is lower than those seen in some larger African cities (such as Kinshasa, Democratic Republic of the Congo), mitigation strategies should be developed soon to prevent further impairment to air quality as Accra, and Ghana as a whole, rapidly grow.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Ghana , Monitoreo del Ambiente , República Democrática del Congo , Material Particulado/análisis , Contaminación del Aire/análisis
3.
Geohealth ; 3(5): 127-144, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31276080

RESUMEN

The U.S. Southwest is projected to experience increasing aridity due to climate change. We quantify the resulting impacts on ambient dust levels and public health using methods consistent with the Environmental Protection Agency's Climate Change Impacts and Risk Analysis framework. We first demonstrate that U.S. Southwest fine (PM2.5) and coarse (PM2.5-10) dust levels are strongly sensitive to variability in the 2-month Standardized Precipitation-Evapotranspiration Index across southwestern North America. We then estimate potential changes in dust levels through 2099 by applying the observed sensitivities to downscaled meteorological output projected by six climate models following an intermediate (Representative Concentration Pathway 4.5, RCP4.5) and a high (RCP8.5) greenhouse gas concentration scenario. By 2080-2099 under RCP8.5 relative to 1986-2005 in the U.S. Southwest: (1) Fine dust levels could increase by 57%, and fine dust-attributable all-cause mortality and hospitalizations could increase by 230% and 360%, respectively; (2) coarse dust levels could increase by 38%, and coarse dust-attributable cardiovascular mortality and asthma emergency department visits could increase by 210% and 88%, respectively; (3) climate-driven changes in dust concentrations can account for 34-47% of these health impacts, with the rest due to increases in population and baseline incidence rates; and (4) economic damages of the health impacts could total $47 billion per year additional to the 1986-2005 value of $13 billion per year. Compared to national-scale climate impacts projected for other U.S. sectors using the Climate Change Impacts and Risk Analysis framework, dust-related mortality ranks fourth behind extreme temperature-related mortality, labor productivity decline, and coastal property loss.

4.
Environ Res ; 156: 791-800, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28501677

RESUMEN

In this study, we modeled concentrations of fine particulate matter (PM2.5) and ozone (O3) attributable to precursor emissions from individual airports in the United States, developing airport-specific health damage functions (deaths per 1000t of precursor emissions) and physically-interpretable regression models to explain variability in these functions. We applied the Community Multiscale Air Quality model using the Decoupled Direct Method to isolate PM2.5- or O3-related contributions from precursor pollutants emitted by 66 individual airports. We linked airport- and pollutant-specific concentrations with population data and literature-based concentration-response functions to create health damage functions. Deaths per 1000t of primary PM2.5 emissions ranged from 3 to 160 across airports, with variability explained by population patterns within 500km of the airport. Deaths per 1000t of precursors for secondary PM2.5 varied across airports from 0.1 to 2.7 for NOx, 0.06 to 2.9 for SO2, and 0.06 to 11 for VOCs, with variability explained by population patterns and ambient concentrations influencing particle formation. Deaths per 1000t of O3 precursors ranged from -0.004 to 1.0 for NOx and 0.03 to 1.5 for VOCs, with strong seasonality and influence of ambient concentrations. Our findings reinforce the importance of location- and source-specific health damage functions in design of health-maximizing emissions control policies.


Asunto(s)
Contaminación del Aire/efectos adversos , Aeropuertos , Modelos Teóricos , Adulto , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/análisis , Compuestos de Amonio/análisis , Compuestos de Amonio/toxicidad , Humanos , Mortalidad , Óxidos de Nitrógeno/análisis , Óxidos de Nitrógeno/toxicidad , Ozono/análisis , Ozono/toxicidad , Material Particulado/análisis , Material Particulado/toxicidad , Dióxido de Azufre/análisis , Dióxido de Azufre/toxicidad , Emisiones de Vehículos , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/toxicidad
5.
Environ Health Perspect ; 125(3): 324-332, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27586513

RESUMEN

BACKGROUND: Residential combustion (RC) and electricity generating unit (EGU) emissions adversely impact air quality and human health by increasing ambient concentrations of fine particulate matter (PM2.5) and ozone (O3). Studies to date have not isolated contributing emissions by state of origin (source-state), which is necessary for policy makers to determine efficient strategies to decrease health impacts. OBJECTIVES: In this study, we aimed to estimate health impacts (premature mortalities) attributable to PM2.5 and O3 from RC and EGU emissions by precursor species, source sector, and source-state in the continental United States for 2005. METHODS: We used the Community Multiscale Air Quality model employing the decoupled direct method to quantify changes in air quality and epidemiological evidence to determine concentration-response functions to calculate associated health impacts. RESULTS: We estimated 21,000 premature mortalities per year from EGU emissions, driven by sulfur dioxide emissions forming PM2.5. More than half of EGU health impacts are attributable to emissions from eight states with significant coal combustion and large downwind populations. We estimate 10,000 premature mortalities per year from RC emissions, driven by primary PM2.5 emissions. States with large populations and significant residential wood combustion dominate RC health impacts. Annual mortality risk per thousand tons of precursor emissions (health damage functions) varied significantly across source-states for both source sectors and all precursor pollutants. CONCLUSIONS: Our findings reinforce the importance of pollutant-specific, location-specific, and source-specific models of health impacts in design of health-risk minimizing emissions control policies. Citation: Penn SL, Arunachalam S, Woody M, Heiger-Bernays W, Tripodis Y, Levy JI. 2017. Estimating state-specific contributions to PM2.5- and O3-related health burden from residential combustion and electricity generating unit emissions in the United States. Environ Health Perspect 125:324-332; http://dx.doi.org/10.1289/EHP550.


Asunto(s)
Contaminación del Aire/estadística & datos numéricos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Estado de Salud , Ozono/análisis , Material Particulado/análisis , Centrales Eléctricas/estadística & datos numéricos , Contaminantes Atmosféricos/análisis , Humanos , Estados Unidos
6.
Sci Total Environ ; 527-528: 47-55, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25956147

RESUMEN

Aircraft activity and airport operations can increase combustion-related air pollutant concentrations, but it is difficult to distinguish aviation emissions from traffic and other local sources. Emission inventories are uncertain and dispersion models may not capture aircraft plume complexity; ambient monitoring data require detailed statistical analyses to extract aviation signals. The goal of this study is to compare two modeling approaches including monitoring-based regression models and the EDMS/AERMOD dispersion model, informing improvements and allowing quantitation of aviation impacts on air quality through multi-pollutant sensitivity and multi-monitor fate/transport analyses. Aggregate concentration comparisons are similar, though diurnal patterns show potential weaknesses in near-field dispersion, treatment of overnight conditions, and emission inventory accuracy.


Asunto(s)
Contaminantes Atmosféricos/análisis , Aeropuertos , Monitoreo del Ambiente/métodos , Modelos Químicos , Óxidos de Nitrógeno/análisis , Material Particulado/análisis , Contaminación del Aire/estadística & datos numéricos , Los Angeles , Hollín/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...