Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sex Plant Reprod ; 23(4): 255-64, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20454908

RESUMEN

Simple de novo screens in Arabidopsis thaliana have previously identified mutants that affect endosperm development but viable-embryo mutants have not been identified. Our strategy to identify autonomous embryo development was to uncouple embryo and endosperm fertilisation. This involved a male-sterile mutant population being crossed with a distinct pollen parent--the pollen was needed to initiate endosperm development and because it was distinct, the maternal progeny could be selected from the hybrid population. This process was refined over three stages, resulting in a viable approach to screen for autonomous embryo mutants. From 8,000 screened plants, a mutation was isolated in which the integument cells extended from the ovule and proliferated into a second complete twinned ovule. Some embryos from the mutant were normal but others developed fused cotyledons. In addition, a proportion of the progeny lacked paternal genes.


Asunto(s)
Arabidopsis/embriología , Arabidopsis/genética , Técnicas Genéticas , Mutación , Arabidopsis/metabolismo , Endospermo/embriología , Endospermo/genética , Endospermo/metabolismo , Fertilización , Óvulo Vegetal/genética , Óvulo Vegetal/crecimiento & desarrollo , Óvulo Vegetal/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polen/embriología , Polen/genética , Polen/metabolismo
2.
BMC Plant Biol ; 10: 72, 2010 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-20406451

RESUMEN

BACKGROUND: Crossing plants of the same species but different ploidies can have dramatic effects on seed growth, but little is known about the alterations to transcriptional programmes responsible for this. Parental genomic imbalance particularly affects proliferation of the endosperm, with an increased ratio of paternally to maternally contributed genomes ('paternal excess') associated with overproliferation, while maternal excess inhibits endosperm growth. One interpretation is that interploidy crosses disrupt the balance in the seed of active copies of parentally imprinted genes. This is supported by the observation that mutations in imprinted FIS-class genes of Arabidopsis thaliana share many features of the paternal excess phenotype. Here we investigated gene expression underlying parent-of-origin effects in Arabidopsis through transcriptional profiling of siliques generated by interploidy crosses and FIS-class mutants. RESULTS: We found that fertilized fis1 mutant seeds have similar profiles to seeds with paternal excess, showing that the shared phenotypes are underpinned by similar patterns of gene expression. We identified genes strongly associated with enhanced or inhibited seed growth; this provided many candidates for further investigation including MADS-box transcription factors, cell cycle genes, and genes involved in hormone pathways. CONCLUSIONS: The work presented here is a step towards understanding the effects on seed development of the related phenomena of parental genome balance and imprinting.


Asunto(s)
Arabidopsis/genética , Perfilación de la Expresión Génica , Semillas/genética , Transcripción Genética , Arabidopsis/crecimiento & desarrollo , Proliferación Celular , Cromatina/genética , Análisis por Conglomerados , Regulación hacia Abajo/genética , Dosificación de Gen/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Mutación/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Reguladores del Crecimiento de las Plantas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Semillas/crecimiento & desarrollo , Regulación hacia Arriba/genética
3.
Plant Cell ; 20(8): 2130-45, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18708477

RESUMEN

Genes controlling hormone levels have been used to increase grain yields in wheat (Triticum aestivum) and rice (Oryza sativa). We created transgenic rice plants expressing maize (Zea mays), rice, or Arabidopsis thaliana genes encoding sterol C-22 hydroxylases that control brassinosteroid (BR) hormone levels using a promoter that is active in only the stems, leaves, and roots. The transgenic plants produced more tillers and more seed than wild-type plants. The seed were heavier as well, especially the seed at the bases of the spikes that fill the least. These phenotypic changes brought about 15 to 44% increases in grain yield per plant relative to wild-type plants in greenhouse and field trials. Expression of the Arabidopsis C-22 hydroxylase in the embryos or endosperms themselves had no apparent effect on seed weight. These results suggested that BRs stimulate the flow of assimilate from the source to the sink. Microarray and photosynthesis analysis of transgenic plants revealed evidence of enhanced CO(2) assimilation, enlarged glucose pools in the flag leaves, and increased assimilation of glucose to starch in the seed. These results further suggested that BRs stimulate the flow of assimilate. Plants have not been bred directly for seed filling traits, suggesting that genes that control seed filling could be used to further increase grain yield in crop plants.


Asunto(s)
Oryza/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Semillas/metabolismo , Esteroides Heterocíclicos/metabolismo , Regulación de la Expresión Génica de las Plantas , Análisis de Secuencia por Matrices de Oligonucleótidos , Oryza/genética , Oryza/crecimiento & desarrollo , Fotosíntesis/genética , Fotosíntesis/fisiología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Regiones Promotoras Genéticas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Semillas/genética , Semillas/crecimiento & desarrollo , Transducción de Señal/genética , Transducción de Señal/fisiología
4.
Dev Cell ; 5(6): 891-901, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14667411

RESUMEN

The MEA Polycomb gene is imprinted in the Arabidopsis endosperm. DME DNA glycosylase activates maternal MEA allele expression in the central cell of the female gametophyte, the progenitor of the endosperm. Maternal mutant dme or mea alleles result in seed abortion. We identified mutations that suppress dme seed abortion and found that they reside in the MET1 methyltransferase gene, which maintains cytosine methylation. Seeds with maternal dme and met1 alleles survive, indicating that suppression occurs in the female gametophyte. Suppression requires a maternal wild-type MEA allele, suggesting that MET1 functions upstream of, or at, MEA. DME activates whereas MET1 suppresses maternal MEA::GFP allele expression in the central cell. MET1 is required for DNA methylation of three regions in the MEA promoter in seeds. Our data suggest that imprinting is controlled in the female gametophyte by antagonism between the two DNA-modifying enzymes, MET1 methyltransferase and DME DNA glycosylase.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Impresión Genómica/fisiología , N-Glicosil Hidrolasas/metabolismo , Transactivadores/metabolismo , Alelos , Secuencia de Aminoácidos , Secuencia de Bases , Citosina/metabolismo , Metilación de ADN , Regulación del Desarrollo de la Expresión Génica , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética , Semillas/genética , Supresión Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA