Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Chem ; 6(1): 244, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37945793

RESUMEN

The application of machine learning (ML) models to optimize antibody affinity to an antigen is gaining prominence. Unfortunately, the small and biased nature of the publicly available antibody-antigen interaction datasets makes it challenging to build an ML model that can accurately predict binding affinity changes due to mutations (ΔΔG). Recognizing these inherent limitations, we reformulated the problem to ask whether an ML model capable of classifying deleterious vs non-deleterious mutations can guide antibody affinity maturation in a practical setting. To test this hypothesis, we developed a Random Forest classifier (Antibody Random Forest Classifier or AbRFC) with expert-guided features and integrated it into a computational-experimental workflow. AbRFC effectively predicted non-deleterious mutations on an in-house validation dataset that is free of biases seen in the publicly available training datasets. Furthermore, experimental screening of a limited number of predictions from the model (<10^2 designs) identified affinity-enhancing mutations in two unrelated SARS-CoV-2 antibodies, resulting in constructs with up to 1000-fold increased binding to the SARS-COV-2 RBD. Our findings indicate that accurate prediction and screening of non-deleterious mutations using machine learning offers a powerful approach to improving antibody affinity.

2.
Viruses ; 14(12)2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36560698

RESUMEN

The computational methods used for engineering antibodies for clinical development have undergone a transformation from three-dimensional structure-guided approaches to artificial-intelligence- and machine-learning-based approaches that leverage the large sequence data space of hundreds of millions of antibodies generated by next-generation sequencing (NGS) studies. Building on the wealth of available sequence data, we implemented a computational shuffling approach to antibody components, using the complementarity-determining region (CDR) and the framework region (FWR) to optimize an antibody for improved affinity and developability. This approach uses a set of rules to suitably combine the CDRs and FWRs derived from naturally occurring antibody sequences to engineer an antibody with high affinity and specificity. To illustrate this approach, we selected a representative SARS-CoV-2-neutralizing antibody, H4, which was identified and isolated previously based on the predominant germlines that were employed in a human host to target the SARS-CoV-2-human ACE2 receptor interaction. Compared to screening vast CDR libraries for affinity enhancements, our approach identified fewer than 100 antibody framework-CDR combinations, from which we screened and selected an antibody (CB79) that showed a reduced dissociation rate and improved affinity against the SARS-CoV-2 spike protein (7-fold) when compared to H4. The improved affinity also translated into improved neutralization (>75-fold improvement) of SARS-CoV-2. Our rapid and robust approach for optimizing antibodies from parts without the need for tedious structure-guided CDR optimization will have broad utility for biotechnological applications.


Asunto(s)
COVID-19 , Regiones Determinantes de Complementariedad , Humanos , Regiones Determinantes de Complementariedad/genética , Afinidad de Anticuerpos , SARS-CoV-2/genética , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Neutralizantes
3.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33446512

RESUMEN

Immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during the current pandemic remains a field of immense interest and active research worldwide. Although the severity of acute infection may depend on the intensity of innate and adaptive immunity, leading to higher morbidity and mortality, the longevity of IgG antibodies, including neutralizing activity to SARS-CoV-2, is viewed as a key correlate of immune protection. Amid reports and concern that there is a rapid decay of IgG antibody levels within 1 mo to 2 mo after acute infection, we set out to study the pattern and duration of IgG antibody response to various SARS-CoV-2 antigens in asymptomatic and symptomatic patients in a community setting. Herein, we show the correlation of IgG anti-spike protein S1 subunit, receptor binding domain, nucleocapsid, and virus neutralizing antibody titers with each other and with clinical features such as length and severity of COVID-19 illness. More importantly, using orthogonal measurements, we found the IgG titers to persist for more than 4 mo post symptom onset, implying that long-lasting immunity to COVID-19 from infection or vaccination might be observed, as seen with other coronaviruses such as SARS and Middle East respiratory syndrome.


Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/inmunología , Inmunidad Humoral , Inmunoglobulina G/sangre , Adulto , Femenino , Humanos , Inmunoensayo , Estudios Longitudinales , Masculino , Persona de Mediana Edad , SARS-CoV-2/inmunología
4.
Cryobiology ; 73(3): 356-366, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27693391

RESUMEN

Cryopreservation of immature testis is a feasible approach for germplasm preservation of male animals. Combinations of dimethyl sulfoxide (DMSO) and foetal bovine serum (FBS) are used for testis cryopreservation. However, an alternative to FBS is needed, because FBS is expensive. Buffalo ocular fluid (BuOF), a slaughter house by-product, could be an economical option. The objective of the present study was to assess whether BuOF can replace FBS for cryopreservation of immature mouse (Mus musculus), rat (Rattus norvegicus), and buffalo (Bubalus bubalis) testes. Results showed that rodent and buffalo testes frozen in DMSO (10% for rodents and 20% for buffalo) with 20% FBS or BuOF had similar numbers of viable and DNA-damaged cells (P > 0.05). The expression of cell proliferation- (PCNA) and apoptosis-specific proteins (Annexin V and BAX/BCL2 ratio) were also comparable in mouse and buffalo testes frozen in DMSO with FBS or BuOF (P > 0.05). Interestingly, rat testis frozen in DMSO with BuOF had lower expression of Annexin V protein than testis frozen in DMSO with FBS (P < 0.05). The percentage of meiotic germ cells (pachytene-stage spermatocytes) in xenografts from testis frozen either in DMSO with BuOF or FBS did not significantly differ in rats or buffalo (P > 0.05). These findings provide evidence that BuOF has potential to replace FBS for cryopreservation of immature rodent and buffalo testis. Further investigation is needed to explore whether BuOF can replace FBS for testis cryopreservation of other species.


Asunto(s)
Líquidos Corporales , Criopreservación/métodos , Crioprotectores/farmacología , Ojo , Testículo/efectos de los fármacos , Animales , Búfalos , Bovinos , Proliferación Celular , Dimetilsulfóxido/farmacología , Congelación , Masculino , Ratones , Ratas , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...