Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Green Chem ; 24(20): 8029-8035, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36324640

RESUMEN

We investigate the interplay between cellulose crystallization and aggregation with interfibrillar interactions, shear forces, and the local changes in the medium's acidity. The latter is affected by the CO2 chemisorbed from the surrounding atmosphere, which, combined with shear forces, explain cellulose gelation. Herein, rheology, nuclear magnetic resonance (NMR), small and wide-angle X-ray scattering (SAXS/WAXS), and focused ion beam scanning electron microscopy (FIB-SEM) are combined to unveil the fundamental factors that limit cellulose gelation and maximize its dissolution in NaOH(aq). The obtained solutions are then proposed for developing green and environmentally friendly cellulose-based materials.

3.
Nano Lett ; 22(13): 5143-5150, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35767745

RESUMEN

Understanding nanoscale moisture interactions is fundamental to most applications of wood, including cellulosic nanomaterials with tailored properties. By combining X-ray scattering experiments with molecular simulations and taking advantage of computed scattering, we studied the moisture-induced changes in cellulose microfibril bundles of softwood secondary cell walls. Our models reproduced the most important experimentally observed changes in diffraction peak locations and widths and gave new insights into their interpretation. We found that changes in the packing of microfibrils dominate at moisture contents above 10-15%, whereas deformations in cellulose crystallites take place closer to the dry state. Fibrillar aggregation is a significant source of drying-related changes in the interior of the microfibrils. Our results corroborate the fundamental role of nanoscale phenomena in the swelling behavior and properties of wood-based materials and promote their utilization in nanomaterials development. Simulation-assisted scattering analysis proved an efficient tool for advancing the nanoscale characterization of cellulosic materials.


Asunto(s)
Microfibrillas , Madera , Pared Celular , Celulosa
4.
ChemSusChem ; 14(21): 4718-4730, 2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34398512

RESUMEN

The production of lignin nanoparticles (LNPs) has emerged as a way to overcome the highly variable and complex molecular structure of lignin. It can offer morphological control of the lignin polymer, allowing the formation of stable LNP dispersions in aqueous media, while increasing the potential of lignin for high-value applications. However, the polydispersity and morphology of LNPs varies depending on the lignin grade and preparation method, and a systematic comparison using different technical lignins is lacking. In this study, it was attempted to find a green fabrication method with a distinct solvent fractionation of lignin to prepare LNPs using three different technical lignins as starting polymers: BLN birch lignin (hardwood, BB), alkali Protobind 1000 (grass, PB), and kraft LignoBoost (softwood, LB). For that, three anti-solvent precipitation approaches to prepare LNPs were systematically compared: 70 % aqueous ethanol, acetone/water (3 : 1) and NaOH as the lignin solvent, and water/aqueous HCl as the anti-solvent. Among all these methods, the acetone/water (3 : 1) approach allowed production of homogeneous and monodisperse LNPs with a negative surface charge and also spherical and smooth surfaces. Overall, the results revealed that the acetone/water (3 : 1) method was the most effective approach tested to obtain homogenous, small, and spherical LNPs from the three technical lignins. These LNPs exhibited an improved stability at different ionic strengths and a wider pH range compared to the other preparation methods, which can greatly increase their application in many fields, such as pharmaceutical and food sciences.

5.
Macromol Rapid Commun ; 42(12): e2100092, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33955068

RESUMEN

Nanoparticle assembly is intensely surveyed because of the numerous applications within fields such as catalysis, batteries, and biomedicine. Here, directed assembly of rod-like, biologically derived cellulose nanocrystals (CNCs) within the template of a processed cotton fiber cell wall, that is, the native origin of CNCs, is reported. It is a system where the assembly takes place in solid state simultaneously with the top-down formation of the CNCs via hydrolysis with HCl vapor. Upon hydrolysis, cellulose microfibrils in the fiber break down to CNCs that then pack together, resulting in reduced pore size distribution of the original fiber. The denser packing is demonstrated by N2 adsorption, water uptake, thermoporometry, and small-angle X-ray scattering, and hypothetically assigned to attractive van der Waals interactions between the CNCs.


Asunto(s)
Celulosa , Nanopartículas , Pared Celular , Fibra de Algodón , Hidrólisis
6.
Carbohydr Polym ; 251: 117064, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33142616

RESUMEN

Molecular-scale interactions between water and cellulose microfibril bundles in plant cell walls are not fully understood, despite their crucial role for many applications of plant biomass. Recent advances in X-ray and neutron scattering analysis allow more accurate interpretation of experimental data from wood cell walls. At the same time, microfibril bundles including hemicelluloses and water can be modelled at atomistic resolution. Computing scattering patterns from atomistic models enables a new, complementary approach to decipher some of the most fundamental questions at this level of the hierarchical cell wall structure. This article introduces studies related to moisture behavior of wood with small/wide-angle X-ray/neutron scattering and atomistic simulations, recent attempts to combine these two approaches, and perspectives and open questions for future research using this powerful combination. Finally, we discuss the opportunities of the combined method in relation to applications of lignocellulosic materials.

7.
Sci Rep ; 10(1): 20844, 2020 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-33257738

RESUMEN

Wood and other plant-based resources provide abundant, renewable raw materials for a variety of applications. Nevertheless, their utilization would greatly benefit from more efficient and accurate methods to characterize the detailed nanoscale architecture of plant cell walls. Non-invasive techniques such as neutron and X-ray scattering hold a promise for elucidating the hierarchical cell wall structure and any changes in its morphology, but their use is hindered by challenges in interpreting the experimental data. We used small-angle neutron scattering in combination with contrast variation by poly(ethylene glycol) (PEG) to identify the scattering contribution from cellulose microfibril bundles in native wood cell walls. Using this method, mean diameters for the microfibril bundles from 12 to 19 nm were determined, without the necessity of cutting, drying or freezing the cell wall. The packing distance of the individual microfibrils inside the bundles can be obtained from the same data. This finding opens up possibilities for further utilization of small-angle scattering in characterizing the plant cell wall nanostructure and its response to chemical, physical and biological modifications or even in situ treatments. Moreover, our results give new insights into the interaction between PEG and the wood nanostructure, which may be helpful for preservation of archaeological woods.

8.
Langmuir ; 35(25): 8373-8382, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31141381

RESUMEN

Colloidal assemblies of phospholipids in oil are known to be highly sensitive to changes in system composition and temperature. Despite the fundamental biological and high industrial relevance of these aggregates, the mechanisms behind the structural changes, especially in real oils, are not well understood. In this work, small-angle X-ray scattering (SAXS) was combined with molecular dynamics simulations to characterize the effects of oleic acid, water, and temperature on self-assembled structures formed by lecithin in rapeseed oil. SAXS showed that adding water to the mixtures caused the precipitation of liquid-crystalline phases with lamellar or hexagonal geometry. The combination of SAXS and molecular dynamics simulations revealed that stable spherical reverse micelles in oil had a core radius of about 2 nm and consisted of approximately 60 phospholipids centered around a core containing water and sugars. The presence of oleic acid improved the stability of reverse micelles against precipitation due to the increase in the water concentration in oil by allowing the reverse micelle cores to expand and accommodate more water. The shape and size of the reverse micelles changed at high temperatures, and irreversible elongation was observed, especially in the presence of oleic acid. The findings show the interdependency of the structure of the reverse micellar aggregates on system composition, in particular, oleic acid and water, as well as temperature. The revealed characteristics of the self-assembled structures have significance in understanding and tuning the properties of vegetable oil-based emulsions, food products, oil purification, and drug delivery systems.


Asunto(s)
Micelas , Fosfolípidos/química , Aceites de Plantas/química , Ácidos Grasos no Esterificados/química , Temperatura , Agua/química
9.
J Appl Crystallogr ; 52(Pt 2): 369-377, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30996716

RESUMEN

Small-angle scattering methods allow an efficient characterization of the hierarchical structure of wood and other cellulosic materials. However, their full utilization would require an analytical model to fit the experimental data. This contribution presents a small-angle scattering model tailored to the analysis of wood samples. The model is based on infinitely long cylinders packed in a hexagonal array with paracrystalline distortion, adapted to the particular purpose of modelling the packing of cellulose microfibrils in the secondary cell wall of wood. The new model has been validated with small-angle neutron and X-ray scattering data from real wood samples at various moisture contents. The model yields reasonable numerical values for the microfibril diameter (2.1-2.5 nm) and packing distance (4 and 3 nm in wet and dry states, respectively) and comparable results between the two methods. It is particularly applicable to wet wood samples and allows changes in the packing of cellulose microfibrils to be followed as a function of moisture content.

10.
Int J Biol Macromol ; 130: 765-777, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30831170

RESUMEN

Cellulose synthase is the enzyme that produces cellulose in the living organisms like plant, and has two functions: polymerizing glucose residues (polymerization) and assembling these polymerized molecules into a crystalline microfibril with a "cellulose I" crystallographic structure (crystallization). Many studies, however, have shown that an in vitro reaction of cellulose synthase produces aggregates of a non-native crystallographic structure "cellulose II", despite the remaining polymerizing activity. This is partial denaturation or loss of crystallization function in cellulose synthase, which needs to be resolved to reconstitute its native activity. To this end, we aimed to clarify the process of cellulose II formation by bacterial cellulose synthase in vitro, using in situ small angle X-ray scattering (SAXS). An increase in scattering specific to synthesis was observed around two distinct regions of q (0.2-0.4 nm-1 and <0.1 nm-1) by time-resolved SAXS measurement. The scattering at higher q-region appears prior to lower-q scattering at beginning of the reaction, indicating the existence of smaller primitive aggregations at the initiation stage. This study demonstrates the use of in situ SAXS measurement to decipher the dynamics of biosynthesized cellulose chains, which is a remarkable example of polymer assembly in ambient conditions.


Asunto(s)
Proteínas Bacterianas/química , Celulosa/síntesis química , Glucosiltransferasas/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Celulosa/química , Celulosa/ultraestructura , Técnicas In Vitro , Espectroscopía Infrarroja por Transformada de Fourier
11.
Carbohydr Polym ; 190: 95-102, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29628264

RESUMEN

The production of biofuels and other chemicals from lignocellulosic biomass is limited by the inefficiency of enzymatic hydrolysis. Here a biomimetic composite material consisting of bacterial cellulose and wood-based hemicelluloses was used to study the effects of hemicelluloses on the enzymatic hydrolysis with a commercial cellulase mixture. Bacterial cellulose synthesized in the presence of hemicelluloses, especially xylan, was found to be more susceptible to enzymatic hydrolysis than hemicellulose-free bacterial cellulose. The reason for the easier hydrolysis could be related to the nanoscale structure of the substrate, particularly the packing of cellulose microfibrils into ribbons or bundles. In addition, small-angle X-ray scattering was used to show that the average nanoscale morphology of bacterial cellulose remained unchanged during the enzymatic hydrolysis. The reported easier enzymatic hydrolysis of bacterial cellulose produced in the presence of wood-based xylan offers new insights to overcome biomass recalcitrance through genetic engineering.


Asunto(s)
Bacterias/química , Materiales Biomiméticos/química , Materiales Biomiméticos/metabolismo , Celulosa/química , Enzimas/metabolismo , Polisacáridos/química , Hidrólisis
12.
Int J Biol Macromol ; 102: 111-118, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28392383

RESUMEN

Composite materials mimicking the plant cell wall structure were made by culturing cellulose-producing bacteria together with secondary-wall hemicelluloses from wood. The effects of spruce galactoglucomannan (GGM) and beech xylan on the nanoscale morphology of bacterial cellulose were studied in the original, hydrated state with small-angle X-ray scattering (SAXS). The SAXS intensities were fitted with a model covering multiple levels of the hierarchical structure. Additional information on the structure of dried samples was obtained using scanning and transmission electron microscopy and infra-red spectroscopy. Both hemicelluloses induced a partial conversion of the cellulose crystal structure from Iα to Iß and a reduction of the cross-sectional dimensions of the cellulose microfibrils, thereby affecting also their packing into bundles. The differences were more pronounced in samples with xylan instead of GGM, and they became more significant with higher hemicellulose concentrations.


Asunto(s)
Celulosa/química , Polisacáridos/química , Madera/química , Cristalografía por Rayos X , Mananos/química
13.
Angew Chem Int Ed Engl ; 55(46): 14455-14458, 2016 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-27761976

RESUMEN

Despite the structural, load-bearing role of cellulose in the plant kingdom, countless efforts have been devoted to degrading this recalcitrant polysaccharide, particularly in the context of biofuels and renewable nanomaterials. Herein, we show how the exposure of plant-based fibers to HCl vapor results in rapid degradation with simultaneous crystallization. Because of the unchanged sample texture and the lack of mass transfer out of the substrate in the gas/solid system, the changes in the crystallinity could be reliably monitored. Furthermore, we describe the preparation of cellulose nanocrystals in high yields and with minimal water consumption. The study serves as a starting point for the solid-state tuning of the supramolecular properties of morphologically heterogeneous biological materials.

14.
Carbohydr Polym ; 136: 656-66, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26572398

RESUMEN

Cellulose was synthesized by cellulose synthases extracted from the Komagataeibacter xylinus (formerly known as Gluconacetobacter xylinus). The effects of temperature and centrifugation of the reaction solution on the synthesis products were investigated. Cellulose with number-average degree of polymerization (DPn) roughly in the range 60-80 and cellulose II crystal structure was produced under all conditions. The amount of cellulose varied with temperature and centrifugation, and the centrifugation at 2000 × g also slightly reduced the DPn. Cellulose production was maximal around the temperature 35 °C and without centrifugation. At higher temperatures and during centrifugation at 2000 × g the proteins started to denature, causing differences also in the morphology of the cellulosic aggregates, as seen with electron microscopy. These observations serve as a basis for discussions about the factors affecting the structure formation and chain length of in vitro synthesized cellulose.


Asunto(s)
Proteínas Bacterianas/química , Celulosa/química , Glucosiltransferasas/química , Polisacáridos Bacterianos/química , Proteínas Bacterianas/metabolismo , Celulosa/análogos & derivados , Gluconacetobacter xylinus/enzimología , Glucosiltransferasas/metabolismo , Polisacáridos Bacterianos/análogos & derivados
15.
Biochim Biophys Acta ; 1838(8): 2099-104, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24796504

RESUMEN

The reassembly of the S-layer protein SlpA of Lactobacillus brevis ATCC 8287 on positively charged liposomes was studied by small angle X-ray scattering (SAXS) and zeta potential measurements. SlpA was reassembled on unilamellar liposomes consisting of 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine and 1,2-dioleoyl-3-trimethylammonium-propane, prepared by extrusion through membranes with pore sizes of 50nm and 100nm. Similarly extruded samples without SlpA were used as a reference. The SlpA-containing samples showed clear diffraction peaks in their SAXS intensities. The lattice constants were calculated from the diffraction pattern and compared to those determined for SlpA on native cell wall fragments. Lattice constants for SlpA reassembled on liposomes (a=9.29nm, b=8.03nm, and γ=84.9°) showed a marked change in the lattice constants b and γ when compared to those determined for SlpA on native cell wall fragments (a=9.41nm, b=6.48nm, and γ=77.0°). The latter are in good agreement with values previously determined by electron microscopy. This indicates that the structure formed by SlpA is stable on the bacterial cell wall, but SlpA reassembles into a different structure on cationic liposomes. From the (10) reflection, the lower limit of crystallite size of SlpA on liposomes was determined to be 92nm, corresponding to approximately ten aligned lattice planes.


Asunto(s)
Proteínas Bacterianas/química , Pared Celular/metabolismo , Levilactobacillus brevis/metabolismo , Liposomas , Dispersión del Ángulo Pequeño , Propiedades de Superficie , Difracción de Rayos X
16.
Carbohydr Polym ; 100: 185-94, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24188853

RESUMEN

The present study reports on a revised kinetic model for alkaline degradation of cellulose accounting for primary peeling/stopping reactions as well as for alkaline hydrolysis followed by secondary peeling. Oxalic acid pretreated cotton linters was utilised as the model substrate for the prehydrolysis-soda anthraquinone process. The main emphasis was investigating the effect of end-group stabilising additives such as sodium borohydride (BH), anthraquinone (AQ), and anthraquinone-2-sulphonic acid sodium salt (AQS) on the rates of the yield loss reactions. BH and AQS ensured a cellulose yield gain of 13% and 11%, respectively, compared to the reference. Both stabilisation agents decreased the content of the reducing end groups in the samples, while in the case of AQS stabilisation a 25% increase in carboxyl group content compared to the reference was also observed. As expected, the addition of end group stabilisers resulted in a significant decrease in the peeling-to-stopping rate constants ratio.


Asunto(s)
Celulosa/química , Antraquinonas/química , Borohidruros/química , Estabilidad de Medicamentos , Concentración de Iones de Hidrógeno , Hidrólisis , Cinética , Ácido Oxálico/química , Oxidación-Reducción
17.
Bioresour Technol ; 129: 135-41, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23238342

RESUMEN

The role of xylan as a limiting factor in the enzymatic hydrolysis of cellulose was studied by hydrolysing nanocellulose samples prepared by mechanical fibrillation of birch pulp with varying xylan content. Analyzing the nanocelluloses and their hydrolysis residues with dynamic FT-IR spectroscopy revealed that a certain fraction of xylan remained tightly attached to cellulose fibrils despite partial hydrolysis of xylan with xylanase prior to pulp fibrillation and that this fraction remained in the structure during the hydrolysis of nanocellulose with cellulase mixture as well. Thus, a loosely bound fraction of xylan was predicted to have been more likely removed by purified xylanase. The presence of loosely bound xylan seemed to limit the hydrolysis of crystalline cellulose, indicated by an increase in cellulose crystallinity and by preserved crystal width measured with wide-angle X-ray scattering. Removing loosely bound xylan led to a proportional hydrolysis of xylan and cellulose with the cellulase mixture.


Asunto(s)
Celulasa/química , Celulosa/química , Nanopartículas/química , Nanopartículas/ultraestructura , Xilanos/química , Activación Enzimática , Hidrólisis , Tamaño de la Partícula , Unión Proteica
18.
Biomacromolecules ; 12(7): 2544-51, 2011 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-21644577

RESUMEN

Subcritical water is a high potential green chemical for the hydrolysis of cellulose. In this study microcrystalline cellulose was treated in subcritical water to study structural changes of the cellulose residues. The alterations in particle size and appearance were studied by scanning electron microscopy (SEM) and those in the degree of polymerization (DP) and molar mass distributions by gel permeation chromatography (GPC). Further, changes in crystallinity and crystallite dimensions were quantified by wide-angle X-ray scattering and (13)C solid-state NMR. The results showed that the crystallinity remained practically unchanged throughout the treatment, whereas the size of the remaining cellulose crystallites increased. Microcrystalline cellulose underwent significant depolymerization in subcritical water. However, depolymerization leveled off at a relatively high degree of polymerization. The molar mass distributions of the residues showed a bimodal form. We infer that cellulose gets dissolved in subcritical water only after extensive depolymerization.


Asunto(s)
Celulosa/química , Agua/química , Conformación de Carbohidratos , Cristalización , Cinética , Tamaño de la Partícula , Propiedades de Superficie
19.
Biomacromolecules ; 11(4): 1111-7, 2010 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-20329744

RESUMEN

To understand the limitations occurring during enzymatic hydrolysis of cellulosic materials in renewable energy production, we used wide-angle X-ray scattering (WAXS), small-angle X-ray scattering (SAXS), X-ray microtomography, and transmission electron microscopy (TEM) to characterize submicrometer changes in the structure of microcrystalline cellulose (Avicel) digested with the Trichoderma reesei enzyme system. The microtomography measurements showed a clear decrease in particle size in scale of tens of micrometers. In all the TEM pictures, similar elongated and partly ramified structures were observed, independent of the hydrolysis time. The SAXS results of rewetted samples suggested a slight change in the structure in scale of 10-20 nm, whereas the WAXS results confirmed that the degree of crystallinity and the crystal sizes remained unchanged. This indicates that the enzymes act on the surface of cellulose bundles and are unable to penetrate into the nanopores of wet cellulose.


Asunto(s)
Celulasas/metabolismo , Celulosa/química , Celulosa/ultraestructura , beta-Glucosidasa/metabolismo , Aspergillus niger/enzimología , Celulosa/metabolismo , Hidrólisis , Microscopía Electrónica de Transmisión , Tamaño de la Partícula , Dispersión del Ángulo Pequeño , Trichoderma/enzimología , Difracción de Rayos X , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...