Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Orthop Res ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499500

RESUMEN

Pannexin 3 (Panx3) is a glycoprotein that forms mechanosensitive channels expressed in chondrocytes and annulus fibrosus cells of the intervertebral disc (IVD). Evidence suggests Panx3 plays contrasting roles in traumatic versus aging osteoarthritis (OA) and intervertebral disc degeneration (IDD). However, whether its deletion influences the response of joint tissue to forced use is unknown. The purpose of this study was to determine if Panx3 deletion in mice causes increased knee joint OA and IDD after forced treadmill running. Male and female wildtype (WT) and Panx3 knockout (KO) mice were randomized to either a no-exercise group (sedentary; SED) or daily forced treadmill running (forced exercise; FEX) from 24 to 30 weeks of age. Knee cartilage and IVD histopathology were evaluated by histology, while tibial secondary ossification centers were analyzed using microcomputed tomography (µCT). Both male and female Panx3 KO mice developed larger superficial defects of the tibial cartilage after forced treadmill running compared with SED WT mice. Additionally, Panx3 KO mice developed reduced bone volume, and female PANX3 KO mice had lengthening of the lateral tubercle at the intercondylar eminence. In the lower lumbar spine, both male and female Panx3 KO mice developed histopathological features of IDD after running compared to SED WT mice. These findings suggest that the combination of deleting Panx3 and forced treadmill running induces OA and causes histopathological changes associated with the degeneration of the IVDs in mice.

2.
J Cell Sci ; 137(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38533727

RESUMEN

Connexins are channel-forming proteins that function to facilitate gap junctional intercellular communication. Here, we use dual cell voltage clamp and dye transfer studies to corroborate past findings showing that Cx31.1 (encoded by GJB5) is defective in gap junction channel formation, illustrating that Cx31.1 alone does not form functional gap junction channels in connexin-deficient mammalian cells. Rather Cx31.1 transiently localizes to the secretory pathway with a subpopulation reaching the cell surface, which is rarely seen in puncta reminiscent of gap junctions. Intracellular retained Cx31.1 was subject to degradation as Cx31.1 accumulated in the presence of proteasomal inhibition, had a faster turnover when Cx43 was present and ultimately reached lysosomes. Although intracellularly retained Cx31.1 was found to interact with Cx43, this interaction did not rescue its delivery to the cell surface. Conversely, the co-expression of Cx31 dramatically rescued the assembly of Cx31.1 into gap junctions where gap junction-mediated dye transfer was enhanced. Collectively, our results indicate that the localization and functional status of Cx31.1 is altered through selective interplay with co-expressed connexins, perhaps suggesting Cx31.1 is a key regulator of intercellular signaling in keratinocytes.


Asunto(s)
Conexinas , Animales , Comunicación Celular/fisiología , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/genética , Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Canales Iónicos/metabolismo , Queratinocitos/metabolismo , Mamíferos/metabolismo , Humanos
3.
Mol Oncol ; 18(4): 969-987, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38327091

RESUMEN

Immunotherapies for malignant melanoma seek to boost the anti-tumoral response of CD8+ T cells, but have a limited patient response rate, in part due to limited tumoral immune cell infiltration. Genetic or pharmacological inhibition of the pannexin 1 (PANX1) channel-forming protein is known to decrease melanoma cell tumorigenic properties in vitro and ex vivo. Here, we crossed Panx1 knockout (Panx1-/-) mice with the inducible melanoma model BrafCA, PtenloxP, Tyr::CreERT2 (BPC). We found that deleting the Panx1 gene in mice does not reduce BRAF(V600E)/Pten-driven primary tumor formation or improve survival. However, tumors in BPC-Panx1-/- mice exhibited a significant increase in the infiltration of CD8+ T lymphocytes, with no changes in the expression of early T-cell activation marker CD69, lymphocyte activation gene 3 protein (LAG-3) checkpoint receptor, or programmed cell death ligand-1 (PD-L1) in tumors when compared to the BPC-Panx1+/+ genotype. Our results suggest that, although Panx1 deletion does not overturn the aggressive BRAF/Pten-driven melanoma progression in vivo, it does increase the infiltration of effector immune T-cell populations in the tumor microenvironment. We propose that PANX1-targeted therapy could be explored as a strategy to increase tumor-infiltrating lymphocytes to boost anti-tumor immunity.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Animales , Ratones , Linfocitos T CD8-positivos/metabolismo , Conexinas/genética , Conexinas/uso terapéutico , Linfocitos Infiltrantes de Tumor , Melanoma/patología , Proteínas del Tejido Nervioso/genética , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias Cutáneas/patología , Microambiente Tumoral
4.
Sci Signal ; 17(821): eadg2622, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38289985

RESUMEN

Targeted degradation regulates the activity of the transcriptional repressor Bcl6 and its ability to suppress oxidative stress and inflammation. Here, we report that abundance of endothelial Bcl6 is determined by its interaction with Golgi-localized pannexin 3 (Panx3) and that Bcl6 transcriptional activity protects against vascular oxidative stress. Consistent with data from obese, hypertensive humans, mice with an endothelial cell-specific deficiency in Panx3 had spontaneous systemic hypertension without obvious changes in channel function, as assessed by Ca2+ handling, ATP amounts, or Golgi luminal pH. Panx3 bound to Bcl6, and its absence reduced Bcl6 protein abundance, suggesting that the interaction with Panx3 stabilized Bcl6 by preventing its degradation. Panx3 deficiency was associated with increased expression of the gene encoding the H2O2-producing enzyme Nox4, which is normally repressed by Bcl6, resulting in H2O2-induced oxidative damage in the vasculature. Catalase rescued impaired vasodilation in mice lacking endothelial Panx3. Administration of a newly developed peptide to inhibit the Panx3-Bcl6 interaction recapitulated the increase in Nox4 expression and in blood pressure seen in mice with endothelial Panx3 deficiency. Panx3-Bcl6-Nox4 dysregulation occurred in obesity-related hypertension, but not when hypertension was induced in the absence of obesity. Our findings provide insight into a channel-independent role of Panx3 wherein its interaction with Bcl6 determines vascular oxidative state, particularly under the adverse conditions of obesity.


Asunto(s)
Hipertensión , Factores de Transcripción , Animales , Humanos , Ratones , Diferenciación Celular , Proliferación Celular/fisiología , Conexinas/metabolismo , Peróxido de Hidrógeno/farmacología , Obesidad , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Factores de Transcripción/metabolismo
5.
Biochem J ; 480(23): 1929-1949, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38038973

RESUMEN

The skin is a highly organized tissue composed of multiple layers and cell types that require coordinated cell to cell communication to maintain tissue homeostasis. In skin cancer, this organized structure and communication is disrupted, prompting the malignant transformation of healthy cells into melanoma, basal cell carcinoma or squamous cell carcinoma tumours. One such family of channel proteins critical for cellular communication is pannexins (PANX1, PANX2, PANX3), all of which are present in the skin. These heptameric single-membrane channels act as conduits for small molecules and ions like ATP and Ca2+ but have also been shown to have channel-independent functions through their interacting partners or action in signalling pathways. Pannexins have diverse roles in the skin such as in skin development, aging, barrier function, keratinocyte differentiation, inflammation, and wound healing, which were discovered through work with pannexin knockout mice, organotypic epidermis models, primary cells, and immortalized cell lines. In the context of cutaneous cancer, PANX1 is present at high levels in melanoma tumours and functions in melanoma carcinogenesis, and both PANX1 and PANX3 expression is altered in non-melanoma skin cancer. PANX2 has thus far not been implicated in any skin cancer. This review will discuss pannexin isoforms, structure, trafficking, post-translational modifications, interactome, and channel activity. We will also outline the expression, localization, and function of pannexin channels within the diverse cell types of the epidermis, dermis, hypodermis, and adnexal structures of the skin, and how these properties are exploited or abrogated in instances of skin cancer.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Ratones , Animales , Conexinas/genética , Conexinas/metabolismo , Proteínas del Tejido Nervioso/genética , Procesamiento Proteico-Postraduccional
6.
Clin Neuropathol ; 42(4): 140-149, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37073958

RESUMEN

Brain metastases are the most common central nervous system malignancy, and the leading cause of cancer-related deaths. Non-small cell lung carcinomas (NSCLC) comprise the most common cell of origin. Immunotherapy, particularly checkpoint inhibitors, has emerged as the standard of care for many patients with advanced lung cancer. Pannexin1 (PANX1) is a transmembrane glycoprotein that forms large-pore channels and has been reported to promote cancer metastasis. However, the roles of PANX1 in lung cancer brain metastases and tumor immune microenvironment have not been characterized. 42 patient-matched formalin-fixed paraffin-embedded tissue samples from lung carcinomas and the subsequent brain metastases were constructed into three tissue microarrays (TMAs). PANX1 and markers of tumor-infiltrating immune cells (CD3, CD4, CD8, CD68, and TMEM119) were assessed using immunohistochemistry and digital image analysis. The expression of PANX1 was significantly higher in brain metastases than in their paired primary lung carcinoma. The high levels of PANX1 in lung carcinoma cells in the brain inversely correlated with infiltration of peripheral blood-derived macrophages. Our findings highlight the role of PANX1 in the progression of metastatic NSCLC, and the potential therapeutic approach of targeting PANX1 enhances the efficacy of immune checkpoint inhibitors in brain metastasis.


Asunto(s)
Neoplasias Encefálicas , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Inmunohistoquímica , Neoplasias Encefálicas/secundario , Microambiente Tumoral , Proteínas del Tejido Nervioso/uso terapéutico , Conexinas/uso terapéutico
7.
J Invest Dermatol ; 143(8): 1509-1519.e14, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36813158

RESUMEN

The channel-forming glycoprotein PANX3 functions in cutaneous wound healing and keratinocyte differentiation, but its role in maintaining skin homeostasis through aging is not yet understood. We found that PANX3 is absent in newborn skin but becomes upregulated with age. We characterized the skin of global Panx3-knockout (KO) mice and found that KO dorsal skin showed sex differences at different ages but generally had reduced dermal and hypodermal areas compared with age-matched controls. Transcriptomic analysis of the KO epidermis revealed reduced E-cadherin stabilization and Wnt signaling compared with that of wild-type, consistent with the inability of primary KO keratinocytes to adhere in culture and diminished epidermal barrier function in KO mice. We also observed increased inflammatory signaling in the KO epidermis and a higher incidence of dermatitis in aged KO mice compared with that in wild-type controls. These findings suggest that during skin aging, PANX3 is critical in the maintenance of dorsal skin architecture, keratinocyte cell-cell and cell-matrix adhesion, and inflammatory skin responses.


Asunto(s)
Queratinocitos , Piel , Ratones , Animales , Femenino , Masculino , Queratinocitos/fisiología , Epidermis , Inflamación/genética , Vía de Señalización Wnt , Ratones Noqueados
8.
J Vasc Res ; 60(2): 114-124, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36366809

RESUMEN

Pannexins (PANX1, 2, 3) are channel-forming glycoproteins that are expressed throughout the cardiovascular and musculoskeletal system. The canonical function of these proteins is to release nucleotides that act as purinergic signalling at the cell membrane or Ca2+ channels at the endoplasmic reticulum membrane. These two forms of signalling are essential for autocrine and paracrine signalling in health, and alterations in this signalling have been implicated in the pathogenesis of many diseases. Many musculoskeletal and cardiovascular diseases are largely the result of a lack of physical activity which causes altered gene expression. Considering exercise training has been shown to alter a wide array of gene expression in musculoskeletal tissues, understanding the interaction between exercise training, gene function and expression in relevant diseases is warranted. With regards to pannexins, multiple publications have shown that exercise training can influence pannexin expression and may influence the significance of its function in certain diseases. This review further discusses the potential interaction between exercise training and pannexin biology in relevant tissues and disease models. We propose that exercise training in relevant animal and human models will provide a more comprehensive understanding of the implications of pannexin biology in disease.


Asunto(s)
Conexinas , Glicoproteínas , Animales , Humanos , Conexinas/genética , Conexinas/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo
9.
Mol Biol Cell ; 33(3): ar24, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34985913

RESUMEN

Pannexins (PANX) are a family of three channel-forming membrane glycoproteins expressed in the skin. Previous studies have focused on the role of PANX1 and PANX3 in the regulation of cellular functions in skin cells while PANX2, the largest member of this protein family, has not been investigated. In the current study, we explored the temporal PANX2 expression in murine skin and found that one Panx2 splice variant (Panx2-202) tends to be more abundant at the protein level and is continuously expressed in developed skin. PANX2 was detected in the suprabasal layers of the mouse epidermis and up-regulated in an in vitro model of rat epidermal keratinocyte differentiation. Furthermore, we show that in apoptotic rat keratinocytes, upon UV light B (UVB)-induced caspase-3/7 activation, ectopically overexpressed PANX2 is cleaved in its C-terminal domain at the D416 residue without increasing the apoptotic rate measured by caspase-3/7 activation. Notably, CRISPR-Cas9 mediated genetic deletion of rat Panx2 delays but does not impair caspase-3/7 activation and cytotoxicity in UVB-irradiated keratinocytes. We propose that endogenous PANX2 expression in keratinocytes promotes cell death after UVB insult and may contribute to skin homeostasis.


Asunto(s)
Conexinas/metabolismo , Proteínas del Tejido Nervioso , Animales , Apoptosis , Queratinocitos/metabolismo , Ratones , Proteínas del Tejido Nervioso/metabolismo , Procesamiento Proteico-Postraduccional , Ratas , Rayos Ultravioleta
10.
Int J Obes (Lond) ; 46(4): 726-738, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34897286

RESUMEN

BACKGROUND: Pannexin 3 (PANX3) is a channel-forming glycoprotein that enables nutrient-induced inflammation in vitro, and genetic linkage data suggest that it regulates body mass index. Here, we characterized inflammatory and metabolic parameters in global Panx3 knockout (KO) mice in the context of forced treadmill running (FEX) and high-fat diet (HFD). METHODS: C57BL/6N (WT) and KO mice were randomized to either a FEX running protocol or no running (SED) from 24 until 30 weeks of age. Body weight was measured biweekly, and body composition was measured at 24 and 30 weeks of age. Male WT and KO mice were fed a HFD from 12 to 28 weeks of age. Metabolic organs were analyzed for a panel of inflammatory markers and PANX3 expression. RESULTS: In females there were no significant differences in body composition between genotypes, which could be due to the lack of PANX3 expression in female white adipose tissue, while male KOs fed a chow diet had lower body weight and lower fat mass at 24 and 30 weeks of age, which was reduced to the same extent as 6 weeks of FEX in WT mice. In addition, male KO mice exhibited significantly lower expression of multiple pro-inflammatory genes in white adipose tissue compared to WT mice. While on a HFD body weight differences were insignificant, multiple inflammatory genes were significantly different in quadriceps muscle and white adipose tissue resulting in a more anti-inflammatory phenotype in KO mice compared to WT. The lower fat mass in male KO mice may be due to significantly fewer adipocytes in their subcutaneous fat compared to WT mice. Mechanistically, adipose stromal cells (ASCs) cultured from KO mice grow significantly slower than WT ASCs. CONCLUSION: PANX3 is expressed in male adult mouse adipose tissue and may regulate adipocyte numbers, influencing fat accumulation and inflammation.


Asunto(s)
Tejido Adiposo , Obesidad , Tejido Adiposo/metabolismo , Animales , Peso Corporal/fisiología , Dieta Alta en Grasa , Femenino , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/genética , Obesidad/metabolismo
11.
Trends Cancer ; 7(12): 1119-1131, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34389277

RESUMEN

Pannexins are a family of glycoproteins that comprises three members, PANX1, PANX2, and PANX3. The widely expressed and interrogated PANX1 forms heptameric membrane channels that primarily serve to connect the cytoplasm to the extracellular milieu by being selectively permeable to small signaling molecules when activated. Apart from notable exceptions, PANX1 in many tumor cells appears to facilitate tumor growth and metastasis, suggesting that pannexin-blocking therapeutics may have utility in cancer. Attenuation of PANX1 function must also consider the fact that PANX1 is found in stromal cells of the tumor microenvironment (TME), including immune cells. This review highlights the key discoveries of the past 5 years that suggest pannexins facilitate, or in some cases inhibit, tumor cell growth and metastasis via direct protein interactions and through the regulated efflux of signaling molecules.


Asunto(s)
Conexinas , Neoplasias , Biología , Proliferación Celular , Conexinas/genética , Conexinas/metabolismo , Humanos , Proteínas del Tejido Nervioso/metabolismo , Microambiente Tumoral
12.
Purinergic Signal ; 17(4): 577-589, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34250568

RESUMEN

Pannexin 3 (PANX3) is a member of the pannexin family of single membrane channel-forming glycoproteins. Originally thought to have a limited localization in cartilage, bone, and skin, PANX3 has now been detected in a variety of other tissues including skeletal muscle, mammary glands, the male reproductive tract, the cochlea, blood vessels, small intestines, teeth, and the vomeronasal organ. In many cell types of the musculoskeletal system, such as osteoblasts, chondrocytes, and odontoblasts, PANX3 has been shown to regulate the balance of proliferation and differentiation. PANX3 can be induced during progenitor cell differentiation, functioning at the cell surface as a conduit for ATP and/or in the endoplasmic reticulum as a calcium leak channel. Evidence in osteoblasts and monocytes also highlight a role for PANX3 in purinergic signalling through its function as an ATP release channel. PANX3 is critical in the development and ageing of bone and cartilage, with its levels temporally regulated in other tissues such as skeletal muscle, skin, and the cochlea. In diseases such as osteoarthritis and intervertebral disc degeneration, PANX3 can have either protective or detrimental roles depending on if the disease is age-related or injury-induced. This review will discuss PANX3 function in tissue growth and regeneration, its role in cellular differentiation, and how it becomes dysregulated in disease conditions such as obesity, Duchenne's muscular dystrophy, osteosarcoma, and non-melanoma skin cancer, where most of the findings on PANX3 function can be attributed to the characterization of Panx3 KO mouse models.


Asunto(s)
Adenosina Trifosfato/metabolismo , Conexinas/metabolismo , Receptores Purinérgicos/metabolismo , Transducción de Señal/fisiología , Animales , Huesos/metabolismo , Cartílago/metabolismo , Diferenciación Celular/fisiología , Condrocitos/metabolismo , Humanos
13.
J Biol Chem ; 296: 100478, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33647315

RESUMEN

Melanoma is the most aggressive skin malignancy with increasing incidence worldwide. Pannexin1 (PANX1), a member of the pannexin family of channel-forming glycoproteins, regulates cellular processes in melanoma cells including proliferation, migration, and invasion/metastasis. However, the mechanisms responsible for coordinating and regulating PANX1 function remain unclear. Here, we demonstrated a direct interaction between the C-terminal region of PANX1 and the N-terminal portion of ß-catenin, a key transcription factor in the Wnt pathway. At the protein level, ß-catenin was significantly decreased when PANX1 was either knocked down or inhibited by two PANX1 blockers, Probenecid and Spironolactone. Immunofluorescence imaging showed a disrupted pattern of ß-catenin localization at the cell membrane in PANX1-deficient cells, and transcription of several Wnt target genes, including MITF, was suppressed. In addition, a mitochondrial stress test revealed that the metabolism of PANX1-deficient cells was impaired, indicating a role for PANX1 in the regulation of the melanoma cell metabolic profile. Taken together, our data show that PANX1 directly interacts with ß-catenin to modulate growth and metabolism in melanoma cells. These findings provide mechanistic insight into PANX1-mediated melanoma progression and may be applicable to other contexts where PANX1 and ß-catenin interact as a potential new component of the Wnt signaling pathway.


Asunto(s)
Conexinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , beta Catenina/metabolismo , Animales , Ciclo Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Conexinas/genética , Conexinas/fisiología , Humanos , Melanoma/genética , Melanoma/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Factores de Transcripción/metabolismo , Vía de Señalización Wnt , beta Catenina/fisiología
14.
Int J Mol Sci ; 22(3)2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499145

RESUMEN

Pannexin 3 (Panx3) is a mechanosensitive, channel-forming glycoprotein implicated in the progression of post-traumatic osteoarthritis. Despite evidence for Panx3 expression in the intervertebral disc (IVD), its function in this cartilaginous joint structure remained unknown. Using Panx3 knockout mice, this study investigated the role of Panx3 in age-associated IVD degeneration and degeneration induced by annulus fibrosus (AF) needle puncture. Loss of Panx3 did not significantly impact the progression of age-associated histopathological IVD degeneration; however, loss of Panx3 was associated with decreased gene expression of Acan, Col1a1, Mmp13 and Runx2 and altered localization of COLX in the IVD at 19 months-of-age. Following IVD injury in the caudal spine, histological analysis of wild-type mice revealed clusters of hypertrophic cells in the AF associated with increased pericellular proteoglycan accumulation, disruptions in lamellar organization and increased lamellar thickness. In Panx3 knockout mice, hypertrophic AF cells were rarely detected and AF structure was largely preserved post-injury. Interestingly, uninjured IVDs adjacent to the site of injury more frequently showed evidence of early nucleus pulposus degeneration in Panx3 knockout mice but remained healthy in wild-type mice. These findings suggest a role for Panx3 in mediating the adaptive cellular responses to altered mechanical stress in the IVD, which may buffer aberrant loads transferred to adjacent motion segments.


Asunto(s)
Anillo Fibroso/lesiones , Conexinas/metabolismo , Degeneración del Disco Intervertebral/metabolismo , Disco Intervertebral/lesiones , Núcleo Pulposo/patología , Proteoglicanos/metabolismo , Envejecimiento , Animales , Anillo Fibroso/patología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Genotipo , Disco Intervertebral/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Punciones , Estrés Mecánico
15.
Mol Biol Cell ; 32(5): 376-390, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33405952

RESUMEN

Pannexin 1 (PANX1) is a glycoprotein that forms large pore channels capable of passing ions and metabolites such as ATP for cellular communication. PANX1 has been implicated in many diseases including breast cancer and melanoma, where inhibition or deletion of PANX1 reduced the tumorigenic and metastatic properties of the cancer cells. We interrogated the effect of single amino acid changes in various PANX1 domains using naturally occurring variants reported in cancer patient tumors. We found that a previously reported variant (Q5H) is present in cancer cells, but was not different from the wild type (Q5) in glycosylation, trafficking, or channel function and did not affect cellular properties. We discovered that the Q5H variant is in fact the highly conserved ancestral allele of PANX1 with 89% of humans carrying at least one Q5H allele. Another mutated form Y150F, found in a melanoma patient tumor, prevented phosphorylation at Y150 as well as complex N-glycosylation while increasing intracellular localization. Sarcoma (SRC) is the predicted kinase to phosphorylate the Y150 residue, and its phosphorylation is not likely to be constitutive, but rather dynamically regulated. The Y150 phosphorylation site is the first one reported to play a role in regulating posttranslational modifications and trafficking of PANX1, with potential consequences on its large-pore channel structure and function in melanoma cells.


Asunto(s)
Conexinas/genética , Conexinas/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Adenosina Trifosfato/metabolismo , Línea Celular Tumoral , Conexinas/fisiología , Glicosilación , Células HEK293 , Humanos , Melanoma/genética , Melanoma/metabolismo , Mutación , Proteínas del Tejido Nervioso/fisiología , Fosforilación , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , Transporte de Proteínas/fisiología
16.
Elife ; 92020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-33052098

RESUMEN

ATP is essential for all living cells. However, how dead cells lose ATP has not been well investigated. In this study, we developed new FRET biosensors for dual imaging of intracellular ATP level and caspase-3 activity in single apoptotic cultured human cells. We show that the cytosolic ATP level starts to decrease immediately after the activation of caspase-3, and this process is completed typically within 2 hr. The ATP decrease was facilitated by caspase-dependent cleavage of the plasma membrane channel pannexin-1, indicating that the intracellular decrease of the apoptotic cell is a 'programmed' process. Apoptotic cells deficient of pannexin-1 sustained the ability to produce ATP through glycolysis and to consume ATP, and did not stop wasting glucose much longer period than normal apoptotic cells. Thus, the pannexin-1 plays a role in arresting the metabolic activity of dead apoptotic cells, most likely through facilitating the loss of intracellular ATP.


Asunto(s)
Adenosina Trifosfato/metabolismo , Apoptosis/fisiología , Conexinas/genética , Proteínas del Tejido Nervioso/genética , Caspasa 3/metabolismo , Conexinas/metabolismo , Células HeLa , Humanos , Proteínas del Tejido Nervioso/metabolismo , Análisis de la Célula Individual
17.
J Ovarian Res ; 13(1): 98, 2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32838805

RESUMEN

BACKGROUND: Intercellular exchange between the oocyte and its surrounding cells within the follicular environment is critical for oocyte maturation and subsequent development. In vertebrates this exchange is facilitated through gap junctions formed by connexin membrane proteins. Another family of membrane proteins called pannexins are able to form single membrane channels that allow cellular exchanges with the extracellular environment. The most ubiquitously expressed and studied member, pannexin 1 (PANX1), has yet to be described thoroughly in female reproductive tissues or functionally studied during oocyte maturation. Here, we look into the expression of pannexin 1 in bovine cumulus-oocyte complexes (COCs), as well as, its potential role in oocyte maturation and development. RESULTS: We show that pannexin 1 is expressed in bovine COCs and that the expression of PANX1 was significantly lower in COCs isolated from large antral follicles (> 5 mm) compared to those isolated from small antral follicles (< 2 mm). Supporting this we also found lower expression of PANX1 in oocytes with higher developmental potential when compared to oocytes with lower developmental potential. We further found that PANX1 channel inhibition during in vitro maturation resulted in temporarily delayed meiotic maturation and improved in vitro developmental outcomes while decreasing intercellular reactive oxygen species. CONCLUSIONS: These data suggests PANX1 is differentially expressed at a critical stage of follicular development when oocytes are acquiring developmental competence, and may play a role in the timing of oocyte maturation.


Asunto(s)
Conexinas/metabolismo , Células del Cúmulo/metabolismo , Oocitos/crecimiento & desarrollo , Animales , Bovinos , Regulación hacia Abajo , Femenino , Regulación del Desarrollo de la Expresión Génica , Oocitos/metabolismo , Especies Reactivas de Oxígeno/metabolismo
19.
Biochim Biophys Acta Rev Cancer ; 1874(1): 188380, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32461135

RESUMEN

Cellular communication through gap junctions and hemichannels formed by connexins and through channels made by pannexins allows for metabolic cooperation and control of cellular activity and signalling. These channel proteins have been described to be tumour suppressors that regulate features such as cell death, proliferation and differentiation. However, they display cancer type-dependent and stage-dependent functions and may facilitate tumour progression through junctional and non-junctional pathways. The accumulated knowledge and emerging strategies to target connexins and pannexins are providing novel clinical opportunities for the treatment of cancer. Here, we provide an updated overview of the role of connexins and pannexins in malignant melanoma. We discuss how targeting of these channel proteins may be used to potentiate antitumour effects in therapeutic settings, including through improved immune-mediated tumour elimination.


Asunto(s)
Antineoplásicos Inmunológicos/uso terapéutico , Conexinas/metabolismo , Melanoma/secundario , Neoplasias Cutáneas/patología , Piel/patología , Animales , Antineoplásicos Inmunológicos/farmacología , Carcinogénesis/efectos de los fármacos , Carcinogénesis/inmunología , Carcinogénesis/patología , Comunicación Celular/efectos de los fármacos , Comunicación Celular/inmunología , Línea Celular Tumoral , Conexinas/agonistas , Conexinas/antagonistas & inhibidores , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/patología , Interacciones Microbiota-Huesped/efectos de los fármacos , Interacciones Microbiota-Huesped/inmunología , Humanos , Melanoma/tratamiento farmacológico , Melanoma/inmunología , Melanoma/mortalidad , Microbiota/inmunología , Invasividad Neoplásica/inmunología , Invasividad Neoplásica/patología , Invasividad Neoplásica/prevención & control , Metástasis de la Neoplasia/inmunología , Metástasis de la Neoplasia/patología , Metástasis de la Neoplasia/prevención & control , Estadificación de Neoplasias , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Piel/citología , Piel/microbiología , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/mortalidad , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
20.
J Biol Chem ; 295(15): 4902-4911, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32132172

RESUMEN

Obesity and elevation of circulating free fatty acids are associated with an accumulation and proinflammatory polarization of macrophages within metabolically active tissues, such as adipose tissue, muscle, liver, and pancreas. Beyond macrophages, neutrophils also accumulate in adipose and muscle tissues during high-fat diets and contribute to a state of local inflammation and insulin resistance. However, the mechanisms by which neutrophils are recruited to these tissues are largely unknown. Here we used a cell culture system as proof of concept to show that, upon exposure to a saturated fatty acid, palmitate, macrophages release nucleotides that attract neutrophils. Moreover, we found that palmitate up-regulates pannexin-1 channels in macrophages that mediate the attraction of neutrophils, shown previously to allow transfer of nucleotides across membranes. These findings suggest that proinflammatory macrophages release nucleotides through pannexin-1, a process that may facilitate neutrophil recruitment into metabolic tissues during obesity.


Asunto(s)
Tejido Adiposo/metabolismo , Conexinas/fisiología , Inflamación/inmunología , Macrófagos/metabolismo , Proteínas del Tejido Nervioso/fisiología , Neutrófilos/metabolismo , Nucleótidos/farmacología , Palmitatos/farmacología , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/inmunología , Animales , Femenino , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Resistencia a la Insulina , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...