Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
2.
Heliyon ; 10(1): e23717, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38332875
3.
J Thorac Cardiovasc Surg ; 166(6): 1746-1755, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37527726

RESUMEN

BACKGROUND: We conducted this phase I, open-label safety and feasibility trial of autologous cord blood (CB) stem cell (CBSC) therapy via a novel blood cardioplegia-based intracoronary infusion technique during the Norwood procedure in neonates with an antenatal diagnosis of hypoplastic left heart syndrome (HLHS). CBSC therapy may support early cardiac remodeling with enhancement of right ventricle (RV) function during the critical interstage period. METHODS: Clinical grade CB mononucleated cells (CBMNCs) were processed to NetCord-FACT International Standards. To maximize yield, CBSCs were not isolated from CBMNCs. CBMNCs were stored at 4 °C (no cryopreservation) for use within 3 days and delivered after each cardioplegia dose (4 × 15 mL). RESULTS: Of 16 patients with antenatal diagnosis, 13 were recruited; of these 13 patients, 3 were not treated due to placental abruption (n = 1) or conditions delaying the Norwood for >4 days (n = 2) and 10 received 644.9 ± 134 × 106 CBMNCs, representing 1.5 ± 1.1 × 106 (CD34+) CBSCs. Interstage mortality was 30% (n = 3; on days 7, 25, and 62). None of the 36 serious adverse events (53% linked to 3 deaths) were related to CBMNC therapy. Cardiac magnetic resonance imaging before stage 2 (n = 5) found an RV mass index comparable to that in an exact-matched historical cohort (n = 22), with a mean RV ejection fraction of 66.2 ± 4.5% and mean indexed stroke volume of 47.4 ± 6.2 mL/m2 versus 53.5 ± 11.6% and 37.2 ± 10.3 mL/m2, respectively. All 7 survivors completed stage 2 and are alive with normal RV function (6 with ≤mild and 1 with moderate tricuspid regurgitation). CONCLUSIONS: This trial demonstrated that autologous CBMNCs delivered in large numbers without prior cryopreservation via a novel intracoronary infusion technique at cardioplegic arrest during Norwood palliation on days 2 to 3 of life is feasible and safe.


Asunto(s)
Síndrome del Corazón Izquierdo Hipoplásico , Procedimientos de Norwood , Embarazo , Recién Nacido , Humanos , Femenino , Sangre Fetal , Estudios de Factibilidad , Placenta , Procedimientos de Norwood/efectos adversos , Procedimientos de Norwood/métodos , Síndrome del Corazón Izquierdo Hipoplásico/diagnóstico por imagen , Síndrome del Corazón Izquierdo Hipoplásico/cirugía , Tratamiento Basado en Trasplante de Células y Tejidos , Ventrículos Cardíacos , Resultado del Tratamiento , Estudios Retrospectivos , Cuidados Paliativos
6.
Pediatr Res ; 94(5): 1631-1638, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37380752

RESUMEN

Despite considerable advances, there is a need to improve the outcomes of newborn infants, especially related to prematurity, encephalopathy and other conditions. In principle, cell therapies have the potential to protect, repair, or sometimes regenerate vital tissues; and improve or sustain organ function. In this review, we present highlights from the First Neonatal Cell Therapies Symposium (2022). Cells tested in preclinical and clinical studies include mesenchymal stromal cells from various sources, umbilical cord blood and cord tissue derived cells, and placental tissue and membrane derived cells. Overall, most preclinical studies suggest potential for benefit, but many of the cells tested were not adequately defined, and the optimal cell type, timing, frequency, cell dose or the most effective protocols for the targeted conditions is not known. There is as yet no clinical evidence for benefit, but several early phase clinical trials are now assessing safety in newborn babies. We discuss parental perspectives on their involvement in these trials, and lessons learnt from previous translational work of promising neonatal therapies. Finally, we make a call to the many research groups around the world working in this exciting yet complex field, to work together to make substantial and timely progress to address the knowledge gaps and move the field forward. IMPACT: Survival of preterm and sick newborn infants is improving, but they continue to be at high risk of many systemic and organ-specific complications. Cell therapies show promising results in preclinical models of various neonatal conditions and early phase clinical trials have been completed or underway. Progress on the potential utility of cell therapies for neonatal conditions, parental perspectives and translational aspects are discussed in this paper.


Asunto(s)
Células Madre Mesenquimatosas , Placenta , Recién Nacido , Lactante , Humanos , Femenino , Embarazo , Recien Nacido Prematuro
7.
Biology (Basel) ; 11(10)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36290415

RESUMEN

Bacille-Calmette Guérin (BCG) modulates atherosclerosis development in experimental animals, but it remains unclear whether neonatal BCG vaccination is pro- or anti-atherogenic. Many animal models differ fundamentally from BCG administration to human infants in terms of age, vaccine preparation, dosing schedule, and route of administration. We aimed to elucidate the effect of neonatal subcutaneous BCG vaccination­analogous to human BCG vaccination­on atherosclerosis development in ApoE−/− mice. At 2 days of age, a total of 40 ApoE−/− mice received either a weight-equivalent human dose of BCG, or saline, subcutaneously. From 4 weeks onwards, the mice were fed a Western-type diet containing 22% fat. At 16 weeks of age, mice were sacrificed for the assessment of atherosclerosis. Body weight, plasma lipids, atherosclerosis lesion size and collagen content were similar in both groups. Atherosclerosis lesion number was lower in mice that received BCG. Macrophage content was 20% lower in the BCG-vaccinated mice (p < 0.05), whereas plaque lipid content was increased by 25% (p < 0.01). In conclusion, neonatal BCG vaccination reduces atherosclerosis plaque number and macrophage content but increases lipid content in a murine model of atherosclerosis. Human epidemiological and mechanistic studies are warranted to investigate whether neonatal BCG vaccination is potentially atheroprotective.

8.
Orphanet J Rare Dis ; 17(1): 156, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35382851

RESUMEN

BACKGROUND: The small patient populations inherent to rare genetic diseases present many challenges to the traditional drug development paradigm. One major challenge is generating sufficient data in early phase studies to inform dose selection for later phase studies and dose optimization for clinical use of the drug. However, optimizing the benefit-risk profile of drugs through appropriate dose selection during drug development is critical for all drugs, including those being developed to treat rare diseases. Recognizing the challenges of conducting dose finding studies in rare disease populations and the importance of dose selection and optimization for successful drug development, we assessed the dose-finding studies and analyses conducted for drugs recently approved for rare genetic diseases. RESULTS: Of the 40 marketing applications for new molecular entity (NME) drugs and biologics approved by the United States Food and Drug Administration for rare genetic diseases from 2015 to 2020, 21 (53%) of the development programs conducted at least one dedicated dose-finding study. In addition, the majority of drug development programs conducted clinical studies in healthy subjects and included population pharmacokinetic and exposure-response analyses; some programs also conducted clinical studies in patient populations other than the disease for which the drug was initially approved. The majority of primary endpoints utilized in dedicated dose-finding studies were biomarkers, and the primary endpoint of the safety and efficacy study matched the primary endpoint used in the dose finding study in 9 of 13 (69%) drug development programs where primary study endpoints were assessed. CONCLUSIONS: Our study showed that NME drug development programs for rare genetic diseases utilize multiple data sources for dosing information, including studies in healthy subjects, population pharmacokinetic analyses, and exposure-response analyses. In addition, our results indicate that biomarkers play a key role in dose-finding studies for rare genetic disease drug development programs. Our findings highlight the need to develop study designs and methods to allow adequate dose-finding efforts within rare disease drug development programs that help overcome the challenges presented by low patient prevalence and other factors. Furthermore, the frequent reliance on biomarkers as endpoints for dose-finding studies underscores the importance of biomarker development in rare diseases.


Asunto(s)
Productos Biológicos , Enfermedades Raras , Productos Biológicos/uso terapéutico , Aprobación de Drogas , Desarrollo de Medicamentos , Humanos , Enfermedades Raras/tratamiento farmacológico , Proyectos de Investigación , Estados Unidos , United States Food and Drug Administration
9.
Oxid Med Cell Longev ; 2022: 5362115, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35340200

RESUMEN

Duchenne muscular dystrophy involves an absence of dystrophin, a cytoskeletal protein which supports cell structural integrity and scaffolding for signalling molecules in myocytes. Affected individuals experience progressive muscle degeneration that leads to irreversible loss of ambulation and respiratory diaphragm function. Although clinical management has greatly advanced, heart failure due to myocardial cell loss and fibrosis remains the major cause of death. We examined cardiac morphology and function in D2.B10-Dmd mdx /J (D2-mdx) mice, a relatively new mouse model of muscular dystrophy, which we compared to their wild-type background DBA/2J mice (DBA/2). We also tested whether drug treatment with a specific blocker of mitochondrial permeability transition pore opening (Debio-025), or ACE inhibition (Perindopril), had any effect on dystrophy-related cardiomyopathy. D2-mdx mice were treated for six weeks with Vehicle control, Debio-025 (20 mg/kg/day), Perindopril (2 mg/kg/day), or a combination (n = 8/group). At 18 weeks, compared to DBA/2, D2-mdx hearts displayed greater ventricular collagen, lower cell density, greater cell diameter, and greater protein expression levels of IL-6, TLR4, BAX/Bcl2, caspase-3, PGC-1α, and notably monoamine oxidases A and B. Remarkably, these adaptations in D2-mdx mice were associated with preserved resting left ventricular function similar to DBA/2 mice. Compared to vehicle, although Perindopril partly attenuated the increase in heart weight and collagen at 18 weeks, the drug treatments had no marked impact on dystrophic cardiomyopathy.


Asunto(s)
Cardiomiopatías , Distrofia Muscular de Duchenne , Animales , Cardiomiopatías/metabolismo , Distrofina , Fibrosis , Ratones , Ratones Endogámicos DBA , Ratones Endogámicos mdx , Miocitos Cardíacos/metabolismo , Función Ventricular Izquierda
10.
Ann Thorac Surg ; 114(4): 1468-1474, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34416229

RESUMEN

BACKGROUND: During hypoxia or acidosis, S-nitrosoglutathione (GSNO) has been shown to protect the cardiomyocyte from ischemia-reperfusion injury. In a randomized double-blinded control study of a porcine model of paediatric cardiopulmonary bypass (CPB), we aimed to evaluate the effects of 2 different doses (low and high) of GSNO. METHODS: Pigs weighing 15-20 kg were exposed to CPB with 1 hour of aortic cross-clamp. Prior to and during CPB, animals were randomized to receive low-dose (up to 20 nmol/kg/min) GSNO (n = 8), high-dose (up to 60 nmol/kg/min) GSNO (n = 6), or normal saline (n = 7). Standard cardiac intensive care management was continued for 4 hours post-bypass. RESULTS: There was a reduction in myocyte apoptosis after administration of GSNO (P = .04) with no difference between low- and high-dose GSNO. The low-dose GSNO group had lower pulmonary vascular resistance post-CPB (P = .007). Mitochondrial complex I activity normalized to citrate synthase activity was higher after GSNO compared with control (P = .02), with no difference between low- and high-dose GSNO. CONCLUSIONS: In a porcine model of CPB, intravenous administration of GSNO limits myocardial apoptosis through preservation of mitochondrial complex I activity, and improves pulmonary vascular resistance. There appears to be a dose-dependent effect to this protection.


Asunto(s)
S-Nitrosoglutatión , Solución Salina , Animales , Apoptosis , Puente Cardiopulmonar/efectos adversos , Citrato (si)-Sintasa , Humanos , S-Nitrosoglutatión/farmacología , S-Nitrosoglutatión/uso terapéutico , Porcinos
12.
Heart Lung Circ ; 30(11): 1602-1612, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34420886

RESUMEN

Transposition of the great arteries (TGA), coarctation of the aorta (CoA), single ventricle (SV) and tetralogy of Fallot (ToF) are forms of congenital heart disease (CHD). Despite advances in treatment, cardiovascular and cerebrovascular complications in patients with repaired CHD occur earlier in life compared to healthy subjects. A factor that may contribute to this increased risk is elevated arterial stiffness. This systematic review provides a critical assessment of current evidence on central arterial stiffness in patients with CHD compared to healthy controls. In July 2020, Medline OVID, EMBASE and Scopus were searched using keywords and MeSH terms. Articles were included if they reported indices of aortic or carotid artery stiffness in patients with TGA, CoA, SV or ToF, and compared these to controls. Additional studies were screened from the reference lists of included articles. Of 1,033 studies identified, 43 were included in the final review. Most studies identified at least one index of central arterial stiffness, commonly in the aortic root or ascending aorta, that was higher in patients with CHD compared to controls. The commonly reported surrogate markers of stiffness were pulse wave velocity, aortic distensibility and the ß stiffness index. There was a relatively small number of original studies, and synthesis of data was limited by methodological heterogeneity, highlighting the need for further studies with standardised methods. However, there was consistent evidence of early and/or accelerated arterial stiffening in CHD patients, which may contribute to the increased risk of adverse cardiovascular and cerebrovascular events in this population.


Asunto(s)
Cardiopatías Congénitas , Tetralogía de Fallot , Transposición de los Grandes Vasos , Rigidez Vascular , Cardiopatías Congénitas/complicaciones , Humanos , Análisis de la Onda del Pulso , Tetralogía de Fallot/cirugía
14.
Clin Sci (Lond) ; 135(15): 1859-1871, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34296277

RESUMEN

BACKGROUND AND AIMS: Preterm birth is associated with increased risk of cardiovascular disease (CVD). This may reflect a legacy of inflammatory exposures such as chorioamnionitis which complicate pregnancies delivering preterm, or recurrent early-life infections, which are common in preterm infants. We previously reported that experimental chorioamnionitis followed by postnatal inflammation has additive and deleterious effects on atherosclerosis in ApoE-/- mice. Here, we aimed to investigate whether innate immune training is a contributory inflammatory mechanism in this murine model of atherosclerosis. METHODS: Bone marrow-derived macrophages and peritoneal macrophages were isolated from 13-week-old ApoE-/- mice, previously exposed to prenatal intra-amniotic (experimental choriomanionitis) and/or repeated postnatal (peritoneal) lipopolysaccharide (LPS). Innate immune responses were assessed by cytokine responses following ex vivo stimulation with toll-like receptor (TLR) agonists (LPS, Pam3Cys) and RPMI for 24-h. Bone marrow progenitor populations were studied using flow cytometric analysis. RESULTS: Following postnatal LPS exposure, bone marrow-derived macrophages and peritoneal macrophages produced more pro-inflammatory cytokines following TLR stimulation than those from saline-treated controls, characteristic of a trained phenotype. Cytokine production ex vivo correlated with atherosclerosis severity in vivo. Prenatal LPS did not affect cytokine production capacity. Combined prenatal and postnatal LPS exposure was associated with a reduction in populations of myeloid progenitor cells in the bone marrow. CONCLUSIONS: Postnatal inflammation results in a trained phenotype in atherosclerosis-prone mice that is not enhanced by prenatal inflammation. If analogous mechanisms occur in humans, then there may be novel early life opportunities to reduce CVD risk in infants with early life infections.


Asunto(s)
Aterosclerosis/inmunología , Corioamnionitis/inmunología , Inmunidad Innata , Macrófagos Peritoneales/inmunología , Células Progenitoras Mieloides/inmunología , Peritonitis/inmunología , Animales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Células Cultivadas , Corioamnionitis/inducido químicamente , Corioamnionitis/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Mediadores de Inflamación/metabolismo , Lipopolisacáridos , Macrófagos Peritoneales/metabolismo , Ratones Noqueados para ApoE , Células Progenitoras Mieloides/metabolismo , Peritonitis/inducido químicamente , Peritonitis/metabolismo , Fenotipo , Embarazo
15.
Biochem Pharmacol ; 185: 114410, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33428897

RESUMEN

Cancer patients treated with doxorubicin are at risk of congestive heart failure due to doxorubicin-mediated cardiotoxicity via topoisomerase IIß poisoning. Acute cardiac muscle damage occurs in response to the very first dose of doxorubicin, however, cardioprotection has been reported after co-treatment of doxorubicin with acyloxyalkyl ester prodrugs. The aim of this study was to examine the role played by various forms of acute cardiac damage mediated by doxorubicin and determine a mechanism for the cardioprotective effect of formaldehyde-releasing prodrug AN-9 (pivaloyloxymethyl butyrate). Doxorubicin-induced cardiac damage in BALB/c mice bearing mammary tumours was established with a single dose of doxorubicin (4 or 16 mg/kg) administered alone or in combination with AN-9 (100 mg/kg). AN-9 protected the heart from doxorubicin-induced myocardial apoptosis and also significantly reduced dsDNA breaks, independent from the level of doxorubicin biodistribution to the heart. Covalent incorporation of [14C]doxorubicin into DNA showed that the combination treatment yielded significantly higher levels of formaldehyde-mediated doxorubicin-DNA adducts compared to doxorubicin alone, yet this form of damage was associated with cardioprotection from apoptosis. The cardiac transcriptomic analysis indicates that the combination treatment initiates inflammatory response signalling pathways. Doxorubicin and AN-9 combination treatments were cardioprotective, yet preserved doxorubicin-mediated anti-tumour proliferation and apoptosis in mammary tumours. This was associated with a switch in doxorubicin action from cardiac topoisomerase IIß poisoning to covalent-DNA adduct formation. Co-administration of doxorubicin and formaldehyde-releasing prodrugs, such as AN-9, may be a promising cardioprotective therapy while maintaining doxorubicin activity in primary mammary tumours.


Asunto(s)
Antibióticos Antineoplásicos/toxicidad , Cardiotoxicidad/patología , Cardiotoxicidad/prevención & control , Doxorrubicina/toxicidad , Miocardio/patología , Animales , Cardiotónicos/farmacología , Cardiotónicos/uso terapéutico , Cardiotoxicidad/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Ratones , Ratones Endogámicos BALB C , Miocardio/metabolismo
17.
Clin Exp Pharmacol Physiol ; 46(11): 995-1000, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31361911

RESUMEN

Remote ischaemic preconditioning (RIPC) has been employed as a non-invasive protective intervention against myocardial ischaemia-reperfusion injury in animal studies. However, the underlying mechanisms are incompletely defined in humans and its clinical efficacy has been inconclusive. As advanced age, disease, and drugs may confound RIPC mechanisms in patients, our aim is to measure whether RIPC evokes release of adenosine, bradykinin, met-enkephalin, nitric oxide, and apolipoproteins in healthy young adults. Healthy subjects (n = 18, 9 males, 23 ± 1.5 years old; 9 females, 23 ± 1.8 years old) participated after informed consent. RIPC was applied using a blood pressure cuff to the dominant arms for four cycles of 5-minute cuff inflation (ischaemia) and 5-minute cuff deflation (reperfusion). Blood was sampled at baseline and immediately after the final cuff deflation (Post-RIPC). Baseline and Post-RIPC plasma levels of adenosine, bradykinin, met-enkephalin, apolipoprotein A-1 (ApoA-1), apolipoprotein D (ApoD), and nitric oxide (as nitrite) were measured via ELISA and high-performance liquid chromatography. Mean (±SD) baseline levels of adenosine, bradykinin, met-enkephalin, ApoA-1, ApoD, and nitrite in healthy young adults were 13.8 ± 6.5 ng/mL, 2.6 ± 1.9 µg/mL, 594.1 ± 197.4 pg/mL, 3.0 ± 0.7 mg/mL, 22.2 ± 4.0 µg/mL, and 49.8 ± 13.4 nmol/L, respectively. Post-RIPC adenosine and nitrite levels increased (59.5 ± 37.9%, P < .0001; 32.2 ± 19.5%, P < .0001), whereas met-enkephalin and ApoD levels marginally decreased (5.3 ± 14.0%, P = .04; 10.8 ± 20.5%, P = .04). Post-RIPC levels were not influenced by sex, age, blood pressure, waist circumference, or BMI. RIPC produces increased levels of adenosine and nitrites, and decreased met-enkephalin and ApoD in the plasma of young healthy adults.


Asunto(s)
Adenosina/sangre , Apolipoproteínas D/sangre , Encefalina Metionina/sangre , Voluntarios Sanos , Precondicionamiento Isquémico Miocárdico , Óxido Nítrico/sangre , Femenino , Humanos , Masculino , Adulto Joven
18.
Clin Sci (Lond) ; 133(10): 1185-1196, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31088858

RESUMEN

Atherosclerosis is a chronic inflammatory disease that has its origins in early life. Postnatal inflammation exacerbates atherosclerosis, but the possible effect of intrauterine inflammation is largely unexplored. Exposure to inflammation in utero is common, especially in infants born preterm, who have increased cardiovascular risk in adulthood. We hypothesised that exposure to inflammation before birth would accelerate the development of atherosclerosis, with the most severe atherosclerosis following exposure to both pre- and postnatal inflammation. Here we studied the effect of prenatal and postnatal inflammation on the development of atherosclerosis by combining established techniques for modelling histological chorioamnionitis and atherosclerosis using apolipoprotein E (ApoE) knockout mice. A single intra-amniotic (IA) injection of lipopolysaccharide (LPS) caused intrauterine inflammation, and increased atherosclerosis at 13 weeks of postnatal age. In mice exposed to postnatal LPS, chorioamnionitis modulated subsequent responses; atherosclerotic lesion size, number and severity were greatest for mice exposed to both intrauterine and postnatal inflammation, with a concomitant decrease in collagen content and increased inflammation of the atherosclerotic plaque. In conclusion, pre- and postnatal inflammation have additive and deleterious effects on the development of atherosclerosis in ApoE knockout mice. The findings are particularly relevant to preterm human infants, whose gestations are frequently complicated by chorioamnionitis and who are particularly susceptible to repeated postnatal infections. Human and mechanistic studies are warranted to guide preventative strategies.


Asunto(s)
Aterosclerosis/etiología , Corioamnionitis , Inflamación/complicaciones , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Masculino , Ratones Noqueados para ApoE , Embarazo
19.
Oxid Med Cell Longev ; 2019: 4532592, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30881593

RESUMEN

Pyruvate dehydrogenase (PDH) complex, a multienzyme complex at the nexus of glycolytic and Krebs cycles, provides acetyl-CoA to the Krebs cycle and NADH to complex I thus supporting a critical role in mitochondrial energy production and cellular survival. PDH activity is regulated by pyruvate dehydrogenase phosphatases (PDP1, PDP2), pyruvate dehydrogenase kinases (PDK 1-4), and mitochondrial pyruvate carriers (MPC1, MPC2). As NADH-dependent oxidative phosphorylation is diminished in systolic heart failure, we tested whether the left ventricular myocardium (LV) from end-stage systolic adult heart failure patients (n = 26) exhibits altered expression of PDH complex subunits, PDK, MPC, PDP, and PDH complex activity, compared to LV from nonfailing donor hearts (n = 21). Compared to nonfailing LV, PDH activity and relative expression levels of E2, E3bp, E1α, and E1ß subunits were greater in LV failure. PDK4, MPC1, and MPC2 expressions were decreased in failing LV, whereas PDP1, PDP2, PDK1, and PDK2 expressions did not differ between nonfailing and failing LV. In order to examine PDK4 further, donor human LV cardiomyocytes were induced in culture to hypertrophy with 0.1 µM angiotensin II and treated with PDK inhibitors (0.2 mM dichloroacetate, or 5 mM pyruvate) or activators (0.6 mM NADH plus 50 µM acetyl CoA). In isolated hypertrophic cardiomyocytes in vitro, PDK activators and inhibitors increased and decreased PDK4, respectively. In conclusion, in end-stage failing hearts, greater expression of PDH proteins and decreased expression of PDK4, MPC1, and MPC2 were evident with higher rates of PDH activity. These adaptations support sustained capacity for PDH to facilitate glucose metabolism in the face of other failing bioenergetic pathways.


Asunto(s)
Insuficiencia Cardíaca Sistólica/tratamiento farmacológico , Complejo Piruvato Deshidrogenasa/uso terapéutico , Animales , Insuficiencia Cardíaca Sistólica/patología , Humanos , Persona de Mediana Edad , Complejo Piruvato Deshidrogenasa/farmacología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...