Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 55(5): 2820-2830, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33555876

RESUMEN

Biogas consisting primarily of methane (CH4) and carbon dioxide (CO2) can be upgraded to a transportation fuel referred to as renewable natural gas (RNG) by removing CO2 and other impurities. RNG has energy content comparable to fossil compressed natural gas (CNG) but with lower life-cycle greenhouse gas (GHG) emissions. In this study, a light-duty cargo van was tested with CNG and two RNG blends on a chassis dynamometer in order to compare the toxicity of the resulting exhaust. Tests for reactive oxygen species (ROS), biomarker expressions (CYP1A1, IL8, COX-2), and mutagenicity (Ames) show that RNG exhaust has toxicity that is comparable or lower than CNG exhaust. Statistical analysis reveals associations between toxicity and tailpipe emissions of benzene, dibenzofuran, and dihydroperoxide dimethyl hexane (the last identification is considered tentative/uncertain). Further gas-phase toxicity may be associated with tailpipe emissions of formaldehyde, dimethyl sulfide, propene, and methyl ketene. CNG exhaust contained higher concentrations of these potentially toxic chemical constituents than RNG exhaust in all of the current tests. Photochemical aging of the vehicle exhaust did not alter these trends. These preliminary results suggest that RNG adoption may be a useful strategy to reduce the carbon intensity of transportation fuels without increasing the toxicity of the vehicle exhaust.


Asunto(s)
Contaminantes Atmosféricos , Gas Natural , Contaminantes Atmosféricos/análisis , Biocombustibles , Gasolina , Metano/análisis , Emisiones de Vehículos/análisis , Emisiones de Vehículos/toxicidad
2.
Environ Sci Technol ; 53(19): 11569-11579, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31479247

RESUMEN

Biogas is a renewable energy source composed of methane, carbon dioxide, and other trace compounds produced from anaerobic digestion of organic matter. A variety of feedstocks can be combined with different digestion techniques that each yields biogas with different trace compositions. California is expanding biogas production systems to help meet greenhouse gas reduction goals. Here, we report the composition of six California biogas streams from three different feedstocks (dairy manure, food waste, and municipal solid waste). The chemical and biological composition of raw biogas is reported, and the toxicity of combusted biogas is tested under fresh and photochemically aged conditions. Results show that municipal waste biogas contained elevated levels of chemicals associated with volatile chemical products such as aromatic hydrocarbons, siloxanes, and certain halogenated hydrocarbons. Food waste biogas contained elevated levels of sulfur-containing compounds including hydrogen sulfide, mercaptans, and sulfur dioxide. Biogas produced from dairy manure generally had lower concentrations of trace chemicals, but the combustion products had slightly higher toxicity response compared to the other feedstocks. Atmospheric aging performed in a photochemical smog chamber did not strongly change the toxicity (oxidative capacity or mutagenicity) of biogas combustion exhaust.


Asunto(s)
Biocombustibles , Eliminación de Residuos , Anaerobiosis , Reactores Biológicos , California , Alimentos , Estiércol , Metano
3.
Environ Sci Technol ; 52(22): 13619-13628, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30296061

RESUMEN

Biogas and biomethane (=purified biogas) are major renewable fuels that play a pivotal role in the evolving global energy economy. Here, we measure ultrafine particle (UFP; Dp (particle diameter) < 100 nm) emissions from the combustion of biomethane and biogas produced from five different representative sources: two food waste digesters, two dairy waste digesters, and one landfill. Combustion exhaust for each of these sources is measured from one or more representative sectors including electricity generation, motor vehicles, and household use. Results show that UFP emissions are similar when using biomethane and natural gas with similar sulfur and siloxane content. Approximately 70% of UFPs emitted from water heaters and cooking stoves were semivolatile, but 30% of the UFPs were nonvolatile and did not evaporate even under extremely high dilution conditions. Photochemical aging of biomethane combustion exhaust and natural gas combustion exhaust produced similar amounts of secondary organic aerosol (SOA) formation. The results of the current study suggest that widespread adoption of biogas and biomethane as a substitute for natural gas will not significantly increase ambient concentrations of primary and secondary UFPs if advanced combustion technology is used and the sulfur and siloxane content is similar for biogas/biomethane and natural gas.


Asunto(s)
Biocombustibles , Gas Natural , Aerosoles , Vehículos a Motor , Emisiones de Vehículos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...