Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Inorg Biochem ; 256: 112573, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38678913

RESUMEN

This paper describes the synthesis, structural analysis, as well as the magnetic and spectroscopic characterizations of three new dicopper(II) complexes with dinucleating phenol-based ligands containing different thioether donor substituents: aromatic (1), aliphatic (2) or thiophene (3). Temperature-dependent magnetometry reveals the presence of antiferromagnetic coupling for 1 and 3 (J = -2.27 cm-1 and -5.01 cm-1, respectively, H = -2JS1S2) and ferromagnetic coupling for 2 (J = 5.72 cm-1). Broken symmetry DFT calculations attribute this behavior to a major contribution from the dz2 orbitals for 1 and 3, and from the dx2-y2 orbitals for 2, along with the p orbitals of the oxygens. The bioinspired catalytic activities of these complexes related to catechol oxidase were studied using 3,5-di-tert-butylcatechol as substrate. The order of catalytic rates for the substrate oxidation follows the trend 1 > 2 > 3 with kcat of (90.79 ± 2.90) × 10-3 for 1, (64.21 ± 0.99) × 10-3 for 2 and (14.20 ± 0.32) × 10-3 s-1 for 3. The complexes also cleave DNA through an oxidative mechanism with minor-groove preference, as indicated by experimental and molecular docking assays. Antimicrobial potential of these highly active complexes has shown that 3 inhibits both Staphylococcus aureus bacterium and Epidermophyton floccosum fungus. Notably, the complexes were found to be nontoxic to normal cells but exhibited cytotoxicity against epidermoid carcinoma cells, surpassing the activity of the metallodrug cisplatin. This research shows the multifaceted properties of these complexes, making them promising candidates for various applications in catalysis, nucleic acids research, and antimicrobial activities.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Oxidación-Reducción , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Ligandos , Sulfuros/química , Sulfuros/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Platino (Metal)/química , Platino (Metal)/farmacología , Línea Celular Tumoral
2.
Molecules ; 28(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37110673

RESUMEN

Carbonyl compounds are widely explored in medicinal inorganic chemistry and have drawn attention due to their signaling functions in homeostasis. Carbon-monoxide-releasing molecules (CORMs) were developed with the purpose of keeping the CO inactive until its release in the intracellular environment, considering its biological relevance. However, for therapeutic applications, the mechanisms of photorelease and which electronic and structural variations influence its rates must be fully understood. In this work, four ligands containing a pyridine, a secondary amine, and a phenolic group with different substituents were used to prepare new Mn(I) carbonyl compounds. Structural and physicochemical characterization of these complexes was carried out and confirmed the proposed structures. X-ray diffractometry structures obtained for the four organometallic compounds revealed that the substituents in the phenolic ring promote only negligible distortions in their geometry. Furthermore, UV-Vis and IR kinetics showed the direct dependence of the electron-withdrawing or donating ability of the substituent group, indicating an influence of the phenol ring on the CO release mechanism. These differences in properties were also supported by theoretical studies at the DFT, TD-DFT, and bonding situation analyses (EDA-NOCV). Two methods were used to determine the CO release constants (kCO,old and kCO,new), where Mn-HbpaBr (1) had the greatest kCO by both methods (Kco,old = 2.36 × 10-3 s-1 and kCO,new = 2.37 × 10-3 s-1). Carbon monoxide release was also evaluated using the myoglobin assay, indicating the release of 1.248 to 1.827 carbon monoxides upon light irradiation.

3.
J Inorg Biochem ; 240: 112095, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36535194

RESUMEN

Inspired by copper-containing enzymes such as galactose oxidase and catechol oxidase, in which distinct coordination environments and nuclearities lead to specific catalytic activities, we summarize here the catalytic properties of dinuclear and mononuclear copper species towards benzyl alcohol oxidation using a multivariate statistical approach. The new dinuclear [Cu2(µ-L1)(µ-pz)]2+ (1) is compared against the mononuclear [CuL2Cl] (2), where (L1)- and (L2)- are the respective deprotonated forms of 2,6-bis((bis(pyridin-2-ylmethyl)amino)methyl)-4-methylphenol, and 3-((bis(pyridin-2-ylmethyl)amino)methyl)-2-hydroxy-5-methylbenzaldehyde and (pz)- is a pyrazolato bridge. Copper(II) perchlorate (CP) is used as control. The catalytic oxidation of benzyl alcohol is pursued, aiming to assess the role of the ligand environment and nuclearity. The multivariate statistical approach allows for the search of optimal catalytic conditions, considering variables such as catalyst load, hydrogen peroxide load, and time. Species 1, 2 and CP promoted selective production of benzaldehyde at different yields, with only negligible amounts of benzoic acid. Under normalized conditions, 2 showed superior catalytic activity. This species is 3.5-fold more active than the monometallic control CP, and points out to the need for an efficient ligand framework. Species 2 is 6-fold more active than the dinuclear 1, and indicates the favored nuclearity for the conversion of alcohols into aldehydes.


Asunto(s)
Alcohol Bencilo , Cobre , Ligandos , Oxidación-Reducción , Análisis Multivariante
4.
J Inorg Biochem ; 236: 111965, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35988388

RESUMEN

Coordination compounds that mimic Purple Acid Phosphatases (PAPs) have drawn attention in the bioinorganic field due to their capacity to cleave phosphodiester bonds. However, their catalytic activity upon phosphate triesters is still unexplored. Thus, we report the synthesis and characterization of two binuclear complexes, [MnIIMnIII(L1)(OAc)2]BF4 (1) and [MnIIFeIII(L1)(OAc)2]BF4 (2) (H2L1 = 2-[N,N-bis-(2- pyridilmethyl)aminomethyl]-4-methyl-6-[N-(2-hydroxy-3-formyl-5-methylbenzyl)-N-(2-pyridylmethyl)aminomethyl]phenol), their hydrolytic activity and antioxidant potential. The complexes were fully characterized, including the X-Ray diffraction (XRD) of 1. Density functional theory (DFT) calculations were performed to better understand their electronic and structural properties and phosphate conjugates. The catalytic activity was analyzed for two model substrates, a diester (BDNPP) and a triester phosphate (DEDNPP). The results suggest enhancement of the hydrolysis reaction by 170 to 1500 times, depending on the substrate and complex. It was possible to accompany the catalytic reaction of DEDNPP hydrolysis by phosphorus nuclear magnetic resonance (31P NMR), showing that both 1 and 2 are efficient catalysts. Moreover, we also addressed that 1 and 2 present a relevant antioxidant potential, protecting the yeast Saccharomyces cerevisiae, used as eukaryotic model of study, against the exposure of cells to acute oxidative stress.


Asunto(s)
Antioxidantes , Compuestos Férricos , Antioxidantes/farmacología , Cristalografía por Rayos X , Compuestos Férricos/química , Hidrólisis , Fenoles , Fosfatos , Fósforo
5.
J Inorg Biochem ; 219: 111392, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33752123

RESUMEN

Herein, we report the synthesis and characterization of the first two AlIII(µ-OH)MII (M = Zn (1) and Cu (2)) complexes with the unsymmetrical ligand H2L{2-[[(2-hydroxybenzyl)(2-pyridylmethyl)]aminomethyl]-6-bis(pyridylmethyl)aminomethyl}-4-methylphenol. The complexes were characterized through elemental analysis, X-ray crystallography, IR spectroscopy, mass spectrometry and potentiometric titration. In addition, complex 2 was characterized by electronic spectroscopy. Kinetics studies on the hydrolysis of the model substrate bis(2,4-dinitrophenyl)phosphate by 1 and 2 show Michaelis-Menten behavior, with 1 being slightly more active (8.31%) than 2 (at pH 7.0). The antimicrobial effect of the compounds was studied using four bacterial strains (Staphylococcus aureus, Pseudomonas aeuruginosa, Shigella sonnei and Shigella dysenteriae) and for both complexes the inhibition of bacterial growth was superior to that caused by sulfapyridine, but inferior to that of tetracycline. The dark cytotoxicity and photocytotoxicity (under UV-A light) of the complexes in a chronic myelogenous leukemia cell line were investigated. Complexes 1 and 2 exhibited significant cytotoxic activity against K562 cells, which undergoes a 2-fold increase on applying 5 min of irradiation with UV-A light. Complex 2 was more effective and a good correlation between cytotoxicity and intracellular concentration was observed, the intracellular copper concentration required to inhibit 50% of cell growth being 3.5 × 10-15 mol cell-1.


Asunto(s)
Aluminio/farmacología , Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Cobre/farmacología , Monoéster Fosfórico Hidrolasas/metabolismo , Zinc/farmacología , Aluminio/química , Antiinfecciosos/farmacología , Bacterias/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/química , Cobre/química , Cristalografía por Rayos X/métodos , Humanos , Hidrólisis , Células K562 , Cinética , Ligandos , Espectrometría de Masas/métodos , Zinc/química
6.
Carbohydr Polym ; 256: 117589, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33483075

RESUMEN

The preconcentration of metal ions present at low concentration levels in aqueous systems and the selective removal of potentially toxic metals are important applications of adsorption processes. In this study, a heptadentate dinucleating ligand was anchored to chitosan for use in adsorption studies on Zn(II), Cu(II) and Ni(II) ions. The novel adsorbent was characterized by 13C NMR and FT-IR spectroscopy, TGA and BET surface area analysis. The degree of substitution of the ligand in chitosan, obtained from CHN analysis, was 0.73. The adsorption kinetics followed a pseudo-second-order model. The rate constants and the adsorption capacities for multicomponent systems decreased in the order Cu(II) >> Ni(II) ∼ Zn(II), indicating the preferential adsorption of Cu(II). For Cu(II) ions, the Langmuir model provided the best fitting to the experimental data, and the monolayer Cu(II) adsorption capacity was 0.404 mmol g-1, while the linear isotherm described Zn(II) and Ni(II) ion adsorption.


Asunto(s)
Quitosano/química , Cobre/química , Níquel/química , Zinc/química , Adsorción , Isótopos de Carbono , Iones , Cinética , Ligandos , Espectroscopía de Resonancia Magnética , Metales/química , Tamaño de la Partícula , Polímeros/química , Espectroscopía Infrarroja por Transformada de Fourier , Agua/química , Contaminantes Químicos del Agua/química
7.
J Inorg Biochem ; 213: 111249, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33011624

RESUMEN

The research reported herein focuses on the synthesis of two new Cu(II) complexes {[Cu2(2-X-4,6-bis(di-2-picolylamino)-1,3,5-triazine], with X = butane-1,4-diamine (2) or N-methylpyrenylbutane-1,4-diamine (3)}, the latter with a pyrene group as a possible DNA intercalating agent. The structure of complex (3) was determined by X-ray crystallography and shows the dinuclear {CuII(µ-OCH3)2CuII} unit in which the CuII···CuII distance of 3.040 Å is similar to that of 2.97 Å previously found for 1, which contains a {CuII(µ-OH)2CuII} structural unit. Complexes (2) and (3) were also characterized in spectroscopic and electrochemical studies, and catecholase-like activity were performed for both complexes. The kinetic parameters obtained for the oxidation of the model substrate 3,5-di-tert-butylcatechol revealed that the insertion of the spacer butane-1,4-diamine and the pyrene group strongly contributes to increasing the catalytic efficiency of these systems. In fact, Kass becomes significantly higher, indicating that these groups influence the interaction between the complex and the substrate. These complexes also show DNA cleavage under mild conditions with moderate reaction times. The rate of cleavage (kcat) indicated that the presence of butane-1,4-diamine and pyrene increased the activity of both complexes. The reaction mechanism seems to have oxidative and hydrolytic features and the effect of DNA groove binding compounds and circular dichroism indicate that all complexes interact with plasmid DNA through the minor groove. High-resolution DNA cleavage assays provide information on the interaction mechanism and for complex (2) a specificity for the unpaired hairpin region containing thymine bases was observed, in contrast to (3).


Asunto(s)
Biomimética , Catecol Oxidasa/química , Complejos de Coordinación/química , Cobre/química , Endonucleasas/química , Triazinas/química , Cristalografía por Rayos X , Ligandos , Estructura Molecular , Oxidación-Reducción , Potenciometría , Análisis Espectral/métodos
8.
Inorg Chem ; 59(18): 13078-13090, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32902965

RESUMEN

The new luminescent carbonyl compounds [Mn(Oxa-H)(CO)3Br] (1) and [Mn(Oxa-NMe2)(CO)3Br] (2) were synthesized and fully characterized. Complexes 1 and 2 showed CO release under blue light (λ453). Spectroscopic techniques and TD-DFT and SOC-TD-DFT calculations indicated that 1 and 2 release the Oxa-H and Oxa-NMe2 coligands in addition to the carbonyl ligands, increasing the luminescence during photoinduction.

9.
Curr Pharm Des ; 26(16): 1759-1777, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32039673

RESUMEN

BACKGROUND: Non-digestible oligosaccharides are versatile sources of chemical diversity, well known for their prebiotic actions, found naturally in plants or produced by chemical or enzymatic synthesis or by hydrolysis of polysaccharides. Compared to polyphenols or even polysaccharides, the antioxidant potential of oligosaccharides is still unexplored. The aim of the present work was to provide an up-to-date, broad and critical contribution on the topic of antioxidant oligosaccharides. METHODS: The search was performed by crossing the words oligosaccharides and antioxidant. Whenever possible, attempts at establishing correlations between chemical structure and antioxidant activity were undertaken. RESULTS: The most representative in vitro and in vivo studies were compiled in two tables. Chitooligosaccharides and xylooligosaccharides and their derivatives were the most studied up to now. The antioxidant activities of oligosaccharides depend on the degree of polymerization and the method used for depolymerization. Other factors influencing the antioxidant strength are solubility, monosaccharide composition, the type of glycosidic linkages of the side chains, molecular weight, reducing sugar content, the presence of phenolic groups such as ferulic acid, and the presence of uronic acid, among others. Modification of the antioxidant capacity of oligosaccharides has been achieved by adding diverse organic groups to their structures, thus increasing also the spectrum of potentially useful molecules. CONCLUSION: A great amount of high-quality evidence has been accumulating during the last decade in support of a meaningful antioxidant activity of oligosaccharides and derivatives. Ingestion of antioxidant oligosaccharides can be visualized as beneficial to human and animal health.


Asunto(s)
Antioxidantes , Oligosacáridos , Animales , Antioxidantes/farmacología , Humanos , Peso Molecular , Polisacáridos/farmacología
10.
J Biol Inorg Chem ; 24(5): 675-691, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31267217

RESUMEN

In this paper, the catalytic effects of aminoguanidine and aminopurine groups in the second sphere of a FeIIIZnII complex that mimics the active site of the metallohydrolase purple acid phosphatase (PAP) are investigated, with a particular view on DNA as substrate. The ligand 3-(((3-((bis(2-(pyridin-2-yl)ethyl)amino)methyl)-2-hydroxy-5-methylbenzyl)(pyridin-2-ylmethyl)amino)meth-yl)-2 hydroxy-5-methylbenzaldehyde-(H2L1bpea) was synthesized and its complex [(OH)FeIII(µ-OH)ZnII(H2O)(L1bpea)](ClO4) was used as a base for comparison with similar complexes previously published in the literature. Subsequent modifications were conducted in the aldehyde group, where aminoguanidine (amig) and aminopurine (apur) were used as side chain derivatives. The complexes [(OH)FeIII(µ-OH)ZnII(H2O)(L1bpea)](ClO4) (1), [(OH)FeIII(µ-OH)ZnII(H2O)(L1bpea-amig)](ClO4) (2) and [(OH)FeIII(µ-OH)ZnII(H2O)(L1bpea-apur)](ClO4) (3) were characterized by spectroscopic methods (infrared, UV-Vis) and ESI-MS spectrometry. Density functional theory (DFT) was also used to better understand the structure of the complexes. The hydrolytic activity of complexes 1, 2 and 3 was analyzed using both the model substrate 2,4-BDNPP (bis-(2,4-dinitrophenyl)phosphate) and DNA. Complexes 2 and 3, containing the derivatized ligands, have a significantly higher association constant (Kassoc≅ 1/KM) for the activated substrate 2,4-BDNPP compared to complex 1. The catalytic efficiency (kcat/KM) is also higher due to hydrogen bonds and/or π-stacking interactions between the substrate and the aminoguanidine or aminopurine groups present in 2 and 3, respectively. In the DNA cleavage assays, all complexes were able to cleave DNA, with 1 and 2 having higher catalytic activity than 3. In addition, when compared to previously analyzed complexes, complex 2 is one of the most active, having a kcat of 0.21 h-1.


Asunto(s)
Complejos de Coordinación/química , ADN/química , Compuestos Férricos/química , Guanidina/química , Purinas/química , Zinc/química , Fosfatasa Ácida/química , Fosfatasa Ácida/metabolismo , División del ADN , Hidrólisis
11.
Bioresour Technol ; 289: 121655, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31247524

RESUMEN

A single laccase with molecular weight of 41 kDa was produced by the white-rot fungus Oudemansiella canarii cultured on solid state fermentation using a mixture of sugarcane bagasse-wheat bran as substrate. The enzyme (5 U) was able to decolourize 80% of 50 mg/L Congo red within 24 h at 30 °C and pH 5.5. The relationship between the decolorization rate and dye concentration obeyed Michaelis-Menten kinetics, with KM and Vmax values of 46.180 ±â€¯6.245 µM and 1.840 ±â€¯0.101 µmol/min, respectively. Fourier transform infrared spectroscopy (FTIR) and mass spectrometry allowed to conclude that the laccase acts not only on the dye chromophore group, but also that it cleaves different covalent bonds, causing an effective fragmentation of the molecule. The action of the laccase caused a significant reduction in toxicity, as indicated by the Microtox test. In conclusion, O. canarii laccase could be useful in future biological strategies aiming at degrading azo dyes.


Asunto(s)
Basidiomycota , Rojo Congo , Compuestos Azo , Colorantes , Lacasa
12.
Int J Biol Macromol ; 111: 1206-1213, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29415412

RESUMEN

In this work, a ß-glucosidase of Aspergillus awamori with a molecular weight of 180 kDa was produced in solid-state cultures using a mixture of pineapple crown leaves and wheat bran. Maximum production of the enzyme (820 ±â€¯30 U/g substrate) was obtained after 8 days of culture at 28 °C and initial moisture of 80%. The crude enzyme was efficiently immobilized on glutaraldehyde cross-linked commercial gelatin. Immobilization changed the kinetics of the enzyme, whose behavior could no longer be described by a saturation function of the Michaelis-Menten type. Comparative evaluation of the free and immobilized enzyme showed that the immobilized enzyme was more thermostable and less inhibited by glucose than the free form. In consequence of these properties, the immobilized enzyme was able to hydrolyze cellobiose more extensively. In association with Trichoderma reesei cellulase, the free and immobilized ß-glucosidase increased the liberation of glucose from cellulose 3- and 5-fold, respectively. Immobilization of the A. awamori ß-glucosidase on glutaraldehyde cross-linked commercial gelatin is an efficient and cheap method allowing the reuse of the enzyme by at least 10 times.


Asunto(s)
Aspergillus/enzimología , Enzimas Inmovilizadas/química , Gelatina/química , beta-Glucosidasa/química , Celobiosa/química , Celulosa/química , Glucosa/química , Hidrólisis , Cinética , Temperatura
13.
Bioresour Technol ; 224: 648-655, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27913169

RESUMEN

In this work, liquid nitrogen was used for the first time in the pretreatment of plant biomasses for purposes of enzymatic saccharification. After treatment (cryocrushing), the initial rates of the enzymatic hydrolysis of eucalyptus sawdust and rice hull were increased more than ten-fold. Cryocrushing did not modify significantly the contents of cellulose, hemicellulose and lignin in both eucalyptus sawdust and rice hulls. However, substantial disorganization of the lignocellulosic materials in consequence of the pretreatment could be observed by electron microscopy. Cryocrushing was highly efficient in improving the saccharification of the holocellulose component of the plant biomasses (from 4.3% to 54.1% for eucalyptus sawdust and from 3.9% to 40.6% for rice hull). It is important to emphasize that it consists in a simple operation with low requirements of water and chemicals, no corrosion, no release of products such as soluble phenolics, furfural and hydroxymethylfurfural and no waste generation.


Asunto(s)
Eucalyptus/química , Nitrógeno/química , Oryza/química , Biomasa , Celulosa/química , Hidrólisis , Lignina/análisis , Nitrógeno/análisis , Polisacáridos/química , Madera/química
14.
J Inorg Biochem ; 146: 77-88, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25792035

RESUMEN

Herein, we report the synthesis and characterization of the new di-iron(III) complex [(bbpmp)(H2O)(Cl)Fe(III)(µ-Ophenoxo)Fe(III)(H2O)Cl)]Cl (1), with the symmetrical ligand 2,6-bis{[(2-hydroxybenzyl)(pyridin-2-yl)methylamino]methyl}-4-methylphenol (H3bbpmp). Complexes 2 with the unsymmetrical ligand H2bpbpmp - {2-[[(2-hydroxybenzyl)(2-pyridylmethyl)]aminomethyl]-6-bis(pyridylmethyl) aminomethyl}-4-methylphenol and 3 with the ligand L(1)=4,11-dimethyl-1,8-bis{2-[N-(di-2-pyridylmethyl)amino]ethyl}cyclam were included for comparison purposes. Complex 1 was characterized through elemental analysis, X-ray crystallography, magnetochemistry, electronic spectroscopy, electrochemistry, mass spectrometry and potentiometric titration. The magnetic data show a very weak antiferromagnetic coupling between the two iron centers of the dinuclear complex 1 (J=-0.29cm(-1)). Due to the presence of labile coordination sites in both iron centers the hydrolysis of both the diester model substrate 2,4-BDNPP and DNA was studied in detail. Complex 1 was also able to catalyze the oxidation of the substrate 3,5-di-tert-butylcatechol (3,5-DTBC) to give the corresponding quinone, and thus it can be considered as a catalytically promiscuous system.


Asunto(s)
Catecol Oxidasa/química , Compuestos Férricos/síntesis química , Hidrolasas/química , Compuestos de Hierro/síntesis química , Catálisis , ADN/química , Compuestos Férricos/química , Compuestos de Hierro/química , Oxidación-Reducción , Especificidad por Sustrato
15.
Inorg Chem ; 52(7): 3594-6, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23496379

RESUMEN

Herein we describe the synthesis of a new heterodinuclear Fe(III)Cu(II) model complex for the active site of purple acid phosphatases and its binding to a polyamine chain, a model for the amino acid residues around the active site. The properties of these systems and their catalytic activity in the hydrolysis of bis(2,4-dinitrophenyl)phosphate are compared, and conclusions regarding the effects of the second coordination sphere are drawn. The positive effect of the polymeric chain on DNA hydrolysis is also described and discussed.


Asunto(s)
Fosfatasa Ácida/química , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Cobre/química , Glicoproteínas/química , Hierro/química , Proteínas de Plantas/química , Poliaminas/química , Aminoácidos/química , Biocatálisis , Dominio Catalítico , Cationes , ADN/química , Hidrólisis , Cinética , Modelos Moleculares , Imitación Molecular
16.
Inorg Chem ; 51(3): 1569-89, 2012 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-22260179

RESUMEN

Herein, we report the synthesis and characterization, through elemental analysis, electronic spectroscopy, electrochemistry, potentiometric titration, electron paramagnetic resonance, and magnetochemistry, of two dinuclear copper(II) complexes, using the unsymmetrical ligands N',N',N-tris(2-pyridylmethyl)-N-(2-hydroxy-3,5-di-tert-butylbenzyl)-1,3-propanediamin-2-ol (L1) and N',N'-bis(2-pyridylmethyl)-N,N-(2-hydroxybenzyl)(2-hydroxy-3,5-di-tert-butylbenzyl)-1,3-propanediamin-2-ol (L2). The structures of the complexes [Cu(2)(L1)(µ-OAc)](ClO(4))(2)·(CH(3))(2)CHOH (1) and [Cu(2)(L2)(µ-OAc)](ClO(4))·H(2)O·(CH(3))(2)CHOH (2) were determined by X-ray crystallography. The complex [Cu(2)(L3)(µ-OAc)](2+) [3; L3 = N-(2-hydroxybenzyl)-N',N',N-tris(2-pyridylmethyl)-1,3-propanediamin-2-ol] was included in this study for comparison purposes only (Neves et al. Inorg. Chim. Acta2005, 358, 1807-1822). Magnetic data show that the Cu(II) centers in 1 and 2 are antiferromagnetically coupled and that the difference in the exchange coupling J found for these complexes (J = -4.3 cm(-1) for 1 and J = -40.0 cm(-1) for 2) is a function of the Cu-O-Cu bridging angle. In addition, 1 and 2 were tested as catalysts in the oxidation of the model substrate 3,5-di-tert-butylcatechol and can be considered as functional models for catechol oxidase. Because these complexes possess labile sites in their structures and in solution they have a potential nucleophile constituted by a terminal Cu(II)-bound hydroxo group, their activity toward hydrolysis of the model substrate 2,4-bis(dinitrophenyl)phosphate and DNA was also investigated. Double electrophilic activation of the phosphodiester by monodentate coordination to the Cu(II) center that contains the phenol group with tert-butyl substituents and hydrogen bonding of the protonated phenol with the phosphate O atom are proposed to increase the hydrolase activity (K(ass.) and k(cat.)) of 1 and 2 in comparison with that found for complex 3. In fact, complexes 1 and 2 show both oxidoreductase and hydrolase/nuclease activities and can thus be regarded as man-made models for studying catalytic promiscuity.


Asunto(s)
Catecol Oxidasa/química , Cobre/química , Hidrolasas/química , Modelos Moleculares , Catálisis , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Espectrofotometría Infrarroja
17.
J Inorg Biochem ; 105(12): 1740-52, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22000789

RESUMEN

In this work we report on the synthesis, crystal structure, and physicochemical characterization of the novel dinuclear [Fe(III)Cd(II)(L)(µ-OAc)(2)]ClO(4)·0.5H(2)O (1) complex containing the unsymmetrical ligand H(2)L=2-bis[{(2-pyridyl-methyl)-aminomethyl}-6-{(2-hydroxy-benzyl)-(2-pyridyl-methyl)}-aminomethyl]-4-methylphenol. Also, with this ligand, the tetranuclear [Fe(2)(III)Hg(2)(II)(L)(2)(OH)(2)](ClO(4))(2)·2CH(3)OH (2) and [Fe(III)Hg(II)(L)(µ-CO(3))Fe(III)Hg(II)(L)](ClO(4))(2)·H(2)O (3) complexes were synthesized and fully characterized. It is demonstrated that the precursor [Fe(III)(2)Hg(II)(2)(L)(2)(OH)(2)](ClO(4))(2)·2CH(3)OH (2) can be converted to (3) by the fixation of atmospheric CO(2) since the crystal structure of the tetranuclear organometallic complex [Fe(III)Hg(II)(L)(µ-CO(3))Fe(III)Hg(II)(L)](ClO(4))(2)·H(2)O (3) with an unprecedented {Fe(III)(µ-O(phenoxo))(2)(µ-CO(3))Fe(III)} core was obtained through X-ray crystallography. In the reaction 2→3 a nucleophilic attack of a Fe(III)-bound hydroxo group on the CO(2) molecule is proposed. In addition, it is also demonstrated that complex (3) can regenerate complex (2) in aqueous/MeOH/NaOH solution. Magnetochemical studies reveal that the Fe(III) centers in 3 are antiferromagnetically coupled (J=-7.2cm(-1)) and that the Fe(III)-OR-Fe(III) angle has no noticeable influence in the exchange coupling. Phosphatase-like activity studies in the hydrolysis of the model substrate bis(2,4-dinitrophenyl) phosphate (2,4-bdnpp) by 1 and 2 show Michaelis-Menten behavior with 1 being ~2.5 times more active than 2. In combination with k(H)/k(D) isotope effects, the kinetic studies suggest a mechanism in which a terminal Fe(III)-bound hydroxide is the hydrolysis-initiating nucleophilic catalyst for 1 and 2. Based on the crystal structures of 1 and 3, it is assumed that the relatively long Fe(III···)Hg(II) distance could be responsible for the lower catalytic effectiveness of 2.


Asunto(s)
Compuestos Férricos/síntesis química , Hierro , Mercurio , Compuestos Organomercuriales/síntesis química , Organofosfatos/química , Biomimética , Dióxido de Carbono/química , Anhidrasas Carbónicas/síntesis química , Anhidrasas Carbónicas/química , Catálisis , Cristalografía por Rayos X , Electroquímica , Compuestos Férricos/química , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Conformación Molecular , Compuestos Organomercuriales/química , Monoéster Fosfórico Hidrolasas/síntesis química , Monoéster Fosfórico Hidrolasas/química , Espectroscopía de Mossbauer
18.
Inorg Chem ; 49(24): 11421-38, 2010 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-21080710

RESUMEN

Purple acid phosphatases (PAPs) are a group of metallohydrolases that contain a dinuclear Fe(III)M(II) center (M(II) = Fe, Mn, Zn) in the active site and are able to catalyze the hydrolysis of a variety of phosphoric acid esters. The dinuclear complex [(H(2)O)Fe(III)(µ-OH)Zn(II)(L-H)](ClO(4))(2) (2) with the ligand 2-[N-bis(2-pyridylmethyl)aminomethyl]-4-methyl-6-[N'-(2-pyridylmethyl)(2-hydroxybenzyl) aminomethyl]phenol (H(2)L-H) has recently been prepared and is found to closely mimic the coordination environment of the Fe(III)Zn(II) active site found in red kidney bean PAP (Neves et al. J. Am. Chem. Soc. 2007, 129, 7486). The biomimetic shows significant catalytic activity in hydrolytic reactions. By using a variety of structural, spectroscopic, and computational techniques the electronic structure of the Fe(III) center of this biomimetic complex was determined. In the solid state the electronic ground state reflects the rhombically distorted Fe(III)N(2)O(4) octahedron with a dominant tetragonal compression aligned along the µ-OH-Fe-O(phenolate) direction. To probe the role of the Fe-O(phenolate) bond, the phenolate moiety was modified to contain electron-donating or -withdrawing groups (-CH(3), -H, -Br, -NO(2)) in the 5-position. The effects of the substituents on the electronic properties of the biomimetic complexes were studied with a range of experimental and computational techniques. This study establishes benchmarks against accurate crystallographic structural information using spectroscopic techniques that are not restricted to single crystals. Kinetic studies on the hydrolysis reaction revealed that the phosphodiesterase activity increases in the order -NO(2) ←Br ←H ←CH(3) when 2,4-bis(dinitrophenyl)phosphate (2,4-bdnpp) was used as substrate, and a linear free energy relationship is found when log(k(cat)/k(0)) is plotted against the Hammett parameter σ. However, nuclease activity measurements in the cleavage of double stranded DNA showed that the complexes containing the electron-withdrawing -NO(2) and electron-donating -CH(3) groups are the most active while the cytotoxic activity of the biomimetics on leukemia and lung tumoral cells is highest for complexes with electron-donating groups.


Asunto(s)
Fosfatasa Ácida/metabolismo , Materiales Biomiméticos/metabolismo , División del ADN , Compuestos Férricos/metabolismo , Glicoproteínas/metabolismo , Compuestos Organometálicos/metabolismo , Piridinas/metabolismo , Zinc/metabolismo , Fosfatasa Ácida/química , Materiales Biomiméticos/química , Línea Celular Tumoral , Supervivencia Celular/fisiología , Dicroismo Circular , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Compuestos Férricos/química , Glicoproteínas/química , Humanos , Cinética , Modelos Moleculares , Compuestos Organometálicos/química , Piridinas/química , Zinc/química
19.
Chem Commun (Camb) ; 46(19): 3375-7, 2010 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-20428519

RESUMEN

A new iron(ii) complex was synthesized and its photonuclease activity against plasmid DNA was evaluated. After kinetic experiments a k(cat) of 18.86 +/- 2.9 h(-1) was obtained, one of the highest nuclease activities of synthetic metallonucleases, selectively activated by 365 nm UV light.


Asunto(s)
ADN/efectos de los fármacos , Compuestos Ferrosos/farmacología , Oxígeno/química , Cristalografía por Rayos X , ADN/química , División del ADN , Desoxirribonucleasas/química , Desoxirribonucleasas/metabolismo , Compuestos Ferrosos/síntesis química , Compuestos Ferrosos/química , Ligandos , Modelos Moleculares , Estructura Molecular , Fotólisis , Plásmidos/química , Rayos Ultravioleta
20.
Inorg Chem ; 49(6): 2580-2, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20163108

RESUMEN

Presented herein is the synthesis and characterization of a new Fe(III)Zn(II) complex containing a Fe(III)-bound phenolate with a carbonyl functional group, which was anchored to 3-aminopropyl-functionalized silica as the solid support. The catalytic efficiency of the immobilized catalyst in the hydrolysis of 2,4-bis(dinitrophenyl)phosphate is comparable to the homogeneous reaction, and the supported catalyst can be reused for subsequent diester hydrolysis reactions.


Asunto(s)
Compuestos Férricos/química , Fosfatos/química , Dióxido de Silicio/química , Compuestos de Zinc/química , Catálisis , Ésteres , Hidrólisis , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA