Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Clin Genet ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38774940

RESUMEN

Skeletal dysplasias are a heterogeneous group of disorders presenting mild to lethal defects. Several factors, such as genetic, prenatal, and postnatal environmental may contribute to reduced growth. Fourteen families of Pakistani origin, presenting the syndromic form of short stature either in the autosomal recessive or autosomal dominant manner were clinically and genetically investigated to uncover the underlying genetic etiology. Homozygosity mapping, whole exome sequencing, and Sanger sequencing were used to search for the disease-causing gene variants. In total, we have identified 13 sequence variants in 10 different genes. The variants in the HSPG2 and XRCC4 genes were not reported previously in the Pakistani population. This study will expand the mutation spectrum of the identified genes and will help in improved diagnosis of the syndromic form of short stature in the local population.

2.
Mol Syndromol ; 14(6): 469-476, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38058757

RESUMEN

Introduction: Split hand and foot malformation (SHFM) or ectrodactyly is a rare limb deformity characterized by median cleft of the hand and foot with impaired or missing central rays. It can occur as an isolated anomaly or in association with abnormalities of other body parts. Methods: After delineating the clinical features of two families (A-B), with non-syndromic SHFM, exome and Sanger sequencing were employed to search for the disease-causing variants. Results: Analysis of exome and Sanger sequencing data revealed two causative variants in the WNT10B gene in affected members of the two families. This included a novel missense change [c.338G>C; p.(Gly113Ala)] in family A and a previously reported frameshift variant [c.884-896delTCCAGCCCCGTCT; p.(Phe295Cysfs*87)] in family B. Conclusion: Our findings add a novel variant in WNT10B gene as the underlying cause of SHFM. The finding adds to the growing body of knowledge about the genetic basis of developmental disorders and provides valuable insights into the molecular mechanisms that regulate limb development.

3.
Eur J Hum Genet ; 31(11): 1270-1274, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37684519

RESUMEN

Polydactyly is the most common limb malformation that occurs in 1.6-10.6 per one thousand live births, with incidence varying with ancestry. The underlying gene has been identified for many of the ~100 syndromes that include polydactyly. While for the more common form, nonsydromic polydactyly, eleven candidate genes have been reported. We investigated the underlying genetic cause of autosomal recessive nonsyndromic postaxial polydactyly in four consanguineous Pakistani families. Some family members with postaxial polydactyly also present with syndactyly, camptodactyly, or clinodactyly. Analysis of the exome sequence data revealed two novel homozygous frameshift deletions in EFCAB7: [c.830delG;p.(Gly277Valfs*5)]; in three families and [c.1350_1351delGA;p.(Asn451Phefs*2)] in one family. Sanger sequencing confirmed that these variants segregated with postaxial polydactyly, i.e., family members with postaxial polydactyly were found to be homozygous while unaffected members were heterozygous or wild type. EFCAB7 displays expressions in the skeletal muscle and on the cellular level in cilia. IQCE-EFCAB7 and EVC-EVC2 are part of the heterotetramer EvC complex, which is a positive regulator of the Hedgehog (Hh) pathway, that plays a key role in limb formation. Depletion of either EFCAB7 or IQCE inhibits induction of Gli1, a direct Hh target gene. Variants in IQCE and GLI1 have been shown to cause nonsyndromic postaxial polydactyly, while variants in EVC and EVC2 underlie Ellis van Creveld and Weyers syndromes, which include postaxial polydactyly as a phenotype. This is the first report of the involvement of EFCAB7 in human disease etiology.


Asunto(s)
Deformidades Congénitas de las Extremidades , Polidactilia , Humanos , Proteínas Hedgehog/metabolismo , Proteína con Dedos de Zinc GLI1 , Polidactilia/genética , Dedos/anomalías
4.
BMC Cancer ; 23(1): 748, 2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37573294

RESUMEN

BACKGROUND: Patients with advanced pancreatic cancer have a poor prognosis and high burden of cancer-related symptoms. It is necessary to assess the trade-off of clinical benefits and possible harms of treatments with anticancer drugs (TAD). This systematic review aims to compare the effectiveness of TAD versus supportive care or no treatment, considering all patient-important outcomes. METHODS: We searched PubMed, Embase, Cochrane Library, and Epistemonikos. Two reviewers performed selection, data extraction and risk of bias assessment. We assessed certainty of the evidence using the GRADE approach. RESULTS: We included 14 randomised controlled trials. Chemotherapy may result in a slight increase in overall survival (MD: 2.97 months (95%CI 1.23, 4.70)) and fewer hospital days (MD: -6.7 (-8.3, -5.1)), however, the evidence is very uncertain about its effect on symptoms, quality of life, functional status, and adverse events. Targeted/biological therapy may result in little to no difference in overall survival and a slight increment in progression-free survival (HR: 0.83 (95%CI 0.63, 1.10)), but probably results in more adverse events (RR: 5.54 (95%CI 1.24, 23.97)). The evidence is very uncertain about the effect of immunotherapy in overall survival and functional status. CONCLUSIONS: The evidence is very uncertain about whether the benefits of using treatment with anticancer drugs outweigh their risks for patients with advanced pancreatic cancer. This uncertainty is further highlighted when considering immunotherapy or a second line of chemotherapy and thus, best supportive care would be an appropriate alternative. Future studies should assess their impact on all patient-important outcomes to inform patients in setting their goals of care.


Asunto(s)
Antineoplásicos , Neoplasias Pancreáticas , Humanos , Calidad de Vida , Antineoplásicos/efectos adversos , Neoplasias Pancreáticas/tratamiento farmacológico , Inmunoterapia/métodos , Neoplasias Pancreáticas
5.
Mol Syndromol ; 14(3): 201-207, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37323198

RESUMEN

Introduction: Syndactyly is a common congenital limb malformation. It occurs due to embryological failure of digit separation during limb development. Syndactyly often runs in families with an incidence of about one out of every 2,500-3,000 live births. Methods: Here, we have reported two families presenting features of severe forms of syndactyly. The disorder segregated in autosomal recessive in one and in autosomal dominant manner in the second family. Search for the causative variants was carried out using whole-exome sequencing in family A and candidate gene sequencing in family B. Results: Analysis of the sequencing data revealed two novel missense variants, including p.(Cys1925Arg) in MEGF8 in family A and p.(Thr89Ile) in GJA1 in family B. Conclusion: In conclusion, the novel findings, presented here, not only expand the mutation spectrum in the genes MEGF8 and GJA1, but this will also facilitate screening other families carrying similar clinical features in the Pakistani population.

6.
Reg Sci Urban Econ ; 95: 103774, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35945933

RESUMEN

We study the causal impact of the negative shock on short-term rentals caused by covid-19 in the tourist-intensive city centre of Lisbon. Our difference-in-differences strategy uses a parish-level treatment relying on the pre-pandemic intensity of short-term rentals, using data between Q3 2018 and Q3 2020. The results suggest that landlords relocated properties into the long-term rental market, in which prices de-crease 4.1%, while listed quantities increase 20% in the treated civil parishes vis-`a-vis comparison ones. We also find evidence of an incremental negative impact on sale prices of 4.8% in treated areas. Our results are robust to the inclusion of Porto.

7.
J Med Genet ; 59(9): 878-887, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34656997

RESUMEN

BACKGROUND: Human coenzyme Q4 (COQ4) is essential for coenzyme Q10 (CoQ10) biosynthesis. Pathogenic variants in COQ4 cause childhood-onset neurodegeneration. We aimed to delineate the clinical spectrum and the cellular consequences of COQ4 deficiency. METHODS: Clinical course and neuroradiological findings in a large cohort of paediatric patients with COQ4 deficiency were analysed. Functional studies in patient-derived cell lines were performed. RESULTS: We characterised 44 individuals from 36 families with COQ4 deficiency (16 newly described). A total of 23 different variants were identified, including four novel variants in COQ4. Correlation analyses of clinical and neuroimaging findings revealed three disease patterns: type 1: early-onset phenotype with neonatal brain anomalies and epileptic encephalopathy; type 2: intermediate phenotype with distinct stroke-like lesions; and type 3: moderate phenotype with non-specific brain pathology and a stable disease course. The functional relevance of COQ4 variants was supported by in vitro studies using patient-derived fibroblast lines. Experiments revealed significantly decreased COQ4 protein levels, reduced levels of cellular CoQ10 and elevated levels of the metabolic intermediate 6-demethoxyubiquinone. CONCLUSION: Our study describes the heterogeneous clinical presentation of COQ4 deficiency and identifies phenotypic subtypes. Cell-based studies support the pathogenic characteristics of COQ4 variants. Due to the insufficient clinical response to oral CoQ10 supplementation, alternative treatment strategies are warranted.


Asunto(s)
Proteínas Mitocondriales , Ubiquinona , Línea Celular , Niño , Humanos , Recién Nacido , Proteínas Mitocondriales/genética , Neuroimagen , Fenotipo , Ubiquinona/genética , Ubiquinona/metabolismo
8.
J Reg Sci ; 62(3): 757-798, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34908586

RESUMEN

We use novel and comprehensive monthly data on electronic payments, by municipality and sector, together with cash withdrawals, to study the impact of Covid-19 in Portugal. Our difference-in-differences event study identifies a causal decrease of 17 and 40 percentage points on the year-on-year growth rate of overall purchases in March and April 2020. We document a stronger impact of the crisis in more central and more urban municipalities, due to a combination of the sectorial composition effect of the local economy and the sharper confinement behavioral effect in these locations. We discuss the importance of tourism for the results.

9.
Cell Rep ; 37(12): 110139, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34936866

RESUMEN

The ATPase Family AAA Domain Containing 3A (ATAD3A), is a mitochondrial inner membrane protein conserved in metazoans. ATAD3A has been associated with several mitochondrial functions, including nucleoid organization, cholesterol metabolism, and mitochondrial translation. To address its primary role, we generated a neuronal-specific conditional knockout (Atad3 nKO) mouse model, which developed a severe encephalopathy by 5 months of age. Pre-symptomatic mice showed aberrant mitochondrial cristae morphogenesis in the cortex as early as 2 months. Using a multi-omics approach in the CNS of 2-to-3-month-old mice, we found early alterations in the organelle membrane structure. We also show that human ATAD3A associates with different components of the inner membrane, including OXPHOS complex I, Letm1, and prohibitin complexes. Stochastic Optical Reconstruction Microscopy (STORM) shows that ATAD3A is regularly distributed along the inner mitochondrial membrane, suggesting a critical structural role in inner mitochondrial membrane and its organization, most likely in an ATPase-dependent manner.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Neuronas/metabolismo , Fosforilación Oxidativa , ATPasas Asociadas con Actividades Celulares Diversas/genética , Animales , Encefalopatías/metabolismo , Femenino , Células HEK293 , Humanos , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mitocondriales/genética , Eliminación de Secuencia , Transcriptoma
10.
JCI Insight ; 5(21)2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33148885

RESUMEN

Complex I (also known as NADH-ubiquinone oxidoreductase) deficiency is the most frequent mitochondrial disorder present in childhood. NADH-ubiquinone oxidoreductase iron-sulfur protein 3 (NDUFS3) is a catalytic subunit of the mitochondrial complex I; NDUFS3 is conserved from bacteria and essential for complex I function. Mutations affecting complex I, including in the Ndufs3 gene, cause fatal neurodegenerative diseases, such as Leigh syndrome. No treatment is available for these conditions. We developed and performed a detailed molecular characterization of a neuron-specific Ndufs3 conditional KO mouse model. We showed that deletion of Ndufs3 in forebrain neurons reduced complex I activity, altered brain energy metabolism, and increased locomotor activity with impaired motor coordination, balance, and stereotyped behavior. Metabolomics analyses showed an increase of glycolysis intermediates, suggesting an adaptive response to the complex I defect. Administration of metformin to these mice delayed the onset of the neurological symptoms but not of neuronal loss. This improvement was likely related to enhancement of glucose uptake and utilization, which are known effects of metformin in the brain. Despite reports that metformin inhibits complex I activity, our findings did not show worsening a complex I defect nor increases in lactic acid, suggesting that metformin should be further evaluated for use in patients with mitochondrial encephalopathies.


Asunto(s)
Complejo I de Transporte de Electrón/deficiencia , Metformina/farmacología , Enfermedades Mitocondriales/complicaciones , Encefalomiopatías Mitocondriales/tratamiento farmacológico , NADH Deshidrogenasa/fisiología , Neuronas/efectos de los fármacos , Animales , Metabolismo Energético , Femenino , Glucólisis , Hipoglucemiantes/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Encefalomiopatías Mitocondriales/etiología , Encefalomiopatías Mitocondriales/metabolismo , Encefalomiopatías Mitocondriales/patología , Neuronas/metabolismo , Neuronas/patología
11.
EMBO Mol Med ; 12(2): e10674, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31916679

RESUMEN

Myopathies are common manifestations of mitochondrial diseases. To investigate whether gene replacement can be used as an effective strategy to treat or cure mitochondrial myopathies, we have generated a complex I conditional knockout mouse model lacking NDUFS3 subunit in skeletal muscle. NDUFS3 protein levels were undetectable in muscle of 15-day-old smKO mice, and myopathy symptoms could be detected by 2 months of age, worsening over time. rAAV9-Ndufs3 delivered systemically into 15- to 18-day-old mice effectively restored NDUFS3 levels in skeletal muscle, precluding the development of the myopathy. To test the ability of rAAV9-mediated gene replacement to revert muscle function after disease onset, we also treated post-symptomatic, 2-month-old mice. The injected mice showed a remarkable improvement of the mitochondrial myopathy and biochemical parameters, which remained for the duration of the study. Our results showed that muscle pathology could be reversed after restoring complex I, which was absent for more than 2 months. These findings have far-reaching implications for the ability of muscle to tolerate a mitochondrial defect and for the treatment of mitochondrial myopathies.


Asunto(s)
Complejo I de Transporte de Electrón/genética , Terapia Genética , Miopatías Mitocondriales , Animales , Complejo I de Transporte de Electrón/deficiencia , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias , Miopatías Mitocondriales/genética , Miopatías Mitocondriales/metabolismo , Músculo Esquelético/metabolismo , NADH Deshidrogenasa/genética
12.
Mol Genet Metab ; 128(4): 452-462, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31727539

RESUMEN

Lethal neonatal encephalopathies are heterogeneous congenital disorders that can be caused by mitochondrial dysfunction. Biallelic large deletions in the contiguous ATAD3B and ATAD3A genes, encoding mitochondrial inner membrane ATPases of unknown function, as well as compound heterozygous nonsense and missense mutations in the ATAD3A gene have been recently associated with fatal neonatal cerebellar hypoplasia. In this work, whole exome sequencing (WES) identified the novel homozygous variant c.1217 T > G in ATAD3A, predicting a p.(Leu406Arg) substitution, in four siblings from a consanguineous family presenting with fatal neonatal cerebellar hypoplasia, seizures, axial hypotonia, hypertrophic cardiomyopathy, hepatomegaly, congenital cataract, and dysmorphic facies. Biochemical phenotypes of the patients included hyperlactatemia and hypocholesterolemia. Healthy siblings and parents were heterozygous for this variant, which is predicted to introduce a polar chain within the catalytic domain of ATAD3A that shortens its beta-sheet structure, presumably affecting protein stability. Accordingly, patient's fibroblasts with the homozygous variant displayed a specific reduction in ATAD3A protein levels associated with profound ultrastructural alterations of mitochondrial cristae and morphology. Our findings exclude the causative role of ATAD3B on this severe phenotype, expand the phenotypical spectrum of ATAD3A pathogenic variants and emphasize the vital role of ATAD3A in mitochondrial biogenesis.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/genética , Cerebelo/anomalías , Genes Recesivos , Predisposición Genética a la Enfermedad , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Mutación , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/patología , ATPasas Asociadas con Actividades Celulares Diversas/química , Alelos , Sustitución de Aminoácidos , Cerebelo/diagnóstico por imagen , Cerebelo/patología , Niño , Preescolar , Discapacidades del Desarrollo/diagnóstico por imagen , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Femenino , Estudios de Asociación Genética , Genotipo , Humanos , Lactante , Masculino , Proteínas de la Membrana/química , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Proteínas Mitocondriales/química , Modelos Moleculares , Malformaciones del Sistema Nervioso/diagnóstico por imagen , Linaje , Conformación Proteica , Relación Estructura-Actividad , Ultrasonografía/métodos , Secuenciación del Exoma
13.
Mol Neurobiol ; 56(5): 3722-3735, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30191381

RESUMEN

Cytochrome c (Cyt c), a heme-containing mitochondrial protein, has a critical function in both respiration and apoptosis. Consistent with these vital functions, somatic Cyt c mouse knockout is embryonic lethal. In order to investigate the sensitivity of postnatal neurons to Cyt c depletion, we developed a neuron-specific conditional knockout model. Neuron-specific Cyt c KO mouse (nCytcKO) was created by crossing the floxed Cyt c mouse with a CamKIIα-cre transgenic mouse, which deletes the floxed alleles postnatally. nCytcKO mice were normal at birth but developed an abnormal phenotype starting at 8 weeks of age with weight loss, tremor, decreased sensorimotor coordination, and sudden death between 12 and 16 weeks. Histological analysis did not show major neuronal degeneration. Analyses of oxidative phosphorylation showed a specific reduction in complex IV levels. Markers of oxidative stress were also increased. This novel model showed that neuronal complex IV is destabilized in the absence of Cyt c. It also showed that ablation of Cyt c in neurons leads to severe behavioral abnormalities and premature death without detectable neuronal loss, suggesting that neurons have the potential to survive for extended periods of time without a functional OXPHOS.


Asunto(s)
Apoptosis , Citocromos c/metabolismo , Eliminación de Gen , Neuronas/metabolismo , Fosforilación Oxidativa , Prosencéfalo/metabolismo , Animales , Complejo IV de Transporte de Electrones/metabolismo , Inflamación/patología , Locomoción , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Degeneración Nerviosa , Neuronas/patología , Estrés Oxidativo , Fenotipo
14.
J Cell Sci ; 131(13)2018 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-29898916

RESUMEN

Mutations in the mitochondrial inner membrane ATPase ATAD3A result in neurological syndromes in humans. In mice, the ubiquitous disruption of Atad3 (also known as Atad3a) was embryonic lethal, but a skeletal muscle-specific conditional knockout (KO) was viable. At birth, ATAD3 muscle KO mice had normal weight, but from 2 months onwards they showed progressive motor-impaired coordination and weakness. Loss of ATAD3 caused early and severe mitochondrial structural abnormalities, mitochondrial proliferation and muscle atrophy. There was dramatic reduction in mitochondrial cristae junctions and overall cristae morphology. The lack of mitochondrial cristae was accompanied by a reduction in high molecular weight mitochondrial contact site and cristae organizing system (MICOS) complexes, and to a lesser extent in OPA1. Moreover, muscles lacking ATAD3 showed altered cholesterol metabolism, accumulation of mitochondrial DNA (mtDNA) replication intermediates, progressive mtDNA depletion and deletions. Unexpectedly, decreases in the levels of some OXPHOS components occurred after cristae destabilization, indicating that ATAD3 is not crucial for mitochondrial translation, as previously suggested. Our results show a critical early role of ATAD3 in regulating mitochondrial inner membrane structure, leading to secondary defects in mtDNA replication and complex V and cholesterol levels in postmitotic tissue.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Colesterol/metabolismo , ADN Mitocondrial/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Músculos/metabolismo , Enfermedades Musculares/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , Animales , Replicación del ADN , ADN Mitocondrial/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Mitocondrias/genética , Proteínas Mitocondriales/genética , Desarrollo de Músculos , Enfermedades Musculares/genética , Enfermedades Musculares/fisiopatología
15.
Aging Cell ; 17(2)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29427317

RESUMEN

PGC-1α is a transcriptional co-activator known as the master regulator of mitochondrial biogenesis. Its control of metabolism has been suggested to exert critical influence in the aging process. We have aged mice overexpressing PGC-1α in skeletal muscle to determine whether the transcriptional changes reflected a pattern of expression observed in younger muscle. Analyses of muscle proteins showed that Pax7 and several autophagy markers were increased. In general, the steady-state levels of several muscle proteins resembled that of muscle from young mice. Age-related mtDNA deletion levels were not increased by the PGC-1α-associated increase in mitochondrial biogenesis. Accordingly, age-related changes in the neuromuscular junction were minimized by PGC-1α overexpression. RNA-Seq showed that several genes overexpressed in the aged PGC-1α transgenic are expressed at higher levels in young when compared to aged skeletal muscle. As expected, there was increased expression of genes associated with energy metabolism but also of pathways associated with muscle integrity and regeneration. We also found that PGC-1α overexpression had a mild but significant effect on longevity. Taken together, overexpression of PGC-1α in aged muscle led to molecular changes that resemble the patterns observed in skeletal muscle from younger mice.


Asunto(s)
Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Factores de Transcripción/metabolismo , Envejecimiento , Animales , Femenino , Humanos , Longevidad , Masculino , Ratones
16.
Biochemistry ; 55(45): 6209-6220, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27791355

RESUMEN

The assembly of the protein complex of cytochrome c oxidase (COX), which participates in the mitochondrial respiratory chain, requires a large number of accessory proteins (the so-called assembly factors). Human COX assembly factor 3 (hCOA3), also known as MITRAC12 or coiled-coil domain-containing protein 56 (CCDC56), interacts with the first subunit protein of COX to form its catalytic core and promotes its assemblage with the other units. Therefore, hCOA3 is involved in COX biogenesis in humans and can be exploited as a drug target in patients with mitochondrial dysfunctions. However, to be considered a molecular target, its structure and conformational stability must first be elucidated. We have embarked on the description of such features by using spectroscopic and hydrodynamic techniques, in aqueous solution and in the presence of detergents, together with computational methods. Our results show that hCOA3 is an oligomeric protein, forming aggregates of different molecular masses in aqueous solution. Moreover, on the basis of fluorescence and circular dichroism results, the protein has (i) its unique tryptophan partially shielded from solvent and (ii) a relatively high percentage of secondary structure. However, this structure is highly flexible and does not involve hydrogen bonding. Experiments in the presence of detergents suggest a slightly higher content of nonrigid helical structure. Theoretical results, based on studies of the primary structure of the protein, further support the idea that hCOA3 is a disordered protein. We suggest that the flexibility of hCOA3 is crucial for its interaction with other proteins to favor mitochondrial protein translocation and assembly of proteins involved in the respiratory chain.


Asunto(s)
Proteínas de la Membrana/química , Proteínas Mitocondriales/química , Multimerización de Proteína , Estructura Secundaria de Proteína , Soluciones/química , Secuencia de Aminoácidos , Dicroismo Circular , Simulación por Computador , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Cinética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Agregado de Proteínas , Unión Proteica , Dominios Proteicos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Dodecil Sulfato de Sodio/química
17.
Hum Mol Genet ; 25(15): 3178-3191, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27288451

RESUMEN

Acute pharmacological activation of adenosine monophosphate (AMP)-kinase using 5-aminoimidazole-4-carboxamide-1-b-D-ribofuranoside (AICAR) has been shown to improve muscle mitochondrial function by increasing mitochondrial biogenesis. We asked whether prolonged AICAR treatment is beneficial in a mouse model of slowly progressing mitochondrial myopathy (Cox10-Mef2c-Cre), and whether the compensatory mechanism is indeed an increase in mitochondrial biogenesis. We treated the animals for 3 months and found that sustained AMP-dependent kinase activation improved cytochrome c oxidase activity, rescued the motor phenotype and delayed the onset of the myopathy. This improvement was observed whether treatment started before or after the onset of the disease. We found that AICAR increased skeletal muscle regeneration thereby decreasing the levels of deleted Cox10-floxed alleles. We conclude that although increase in mitochondrial biogenesis and other pathways may contribute, the main mechanism by which AICAR improves the myopathy phenotype is by promoting muscle regeneration.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Miopatías Mitocondriales/tratamiento farmacológico , Miopatías Mitocondriales/metabolismo , Fibras Musculares Esqueléticas/fisiología , Regeneración/efectos de los fármacos , Ribonucleótidos/farmacología , Proteínas Quinasas Activadas por AMP/genética , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Aminoimidazol Carboxamida/farmacología , Animales , Modelos Animales de Enfermedad , Activación Enzimática/efectos de los fármacos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Mitocondrias Musculares/genética , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/patología , Miopatías Mitocondriales/genética , Miopatías Mitocondriales/patología
18.
Mol Neurodegener ; 11: 25, 2016 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-27038906

RESUMEN

BACKGROUND: Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor and non-motor symptoms. The cause of the motor symptoms is the loss of dopaminergic neurons in the substantia nigra with consequent depletion of dopamine in the striatum. Although the etiology of PD is unknown, mitochondrial dysfunctions, including cytochrome c oxidase (Complex IV) impairment in dopaminergic neurons, have been associated with the disease's pathophysiology. In order to analyze the role of Complex IV in PD, we knocked out Cox10 (essential for the maturation of COXI, a catalytic subunit of Complex IV) in dopaminergic neurons. We also tested whether the resulting phenotype was improved by stimulating the PPAR-γ pathway. RESULTS: Cox10/DAT-cre mice showed decreased numbers of TH+ and DAT+ cells in the substantia nigra, early striatal dopamine depletion, motor defects reversible with L-DOPA treatment and hypersensitivity to L-DOPA with hyperkinetic behavior. We found that chronic pioglitazone (PPAR-γ agonist) treatment ameliorated the motor phenotype in Cox10/DAT-cre mice. Although neither mitochondrial function nor the number of dopaminergic neurons was improved, neuroinflammation in the midbrain and the striatum was decreased. CONCLUSIONS: By triggering a mitochondrial Complex IV defect in dopaminergic neurons, we created a new mouse model resembling the late stages of PD with massive degeneration of dopaminergic neurons and striatal dopamine depletion. The motor phenotypes were improved by Pioglitazone treatment, suggesting that targetable secondary pathways can influence the development of certain forms of PD.


Asunto(s)
Neuronas Dopaminérgicas/efectos de los fármacos , Inflamación/metabolismo , Mitocondrias/efectos de los fármacos , Enfermedad de Parkinson/tratamiento farmacológico , Tiazolidinedionas/farmacología , Animales , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Mesencéfalo/efectos de los fármacos , Mesencéfalo/metabolismo , Ratones Noqueados , Ratones Transgénicos , Mitocondrias/metabolismo , Enfermedad de Parkinson/genética , Fenotipo , Pioglitazona , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo
19.
Mol Ther ; 23(10): 1592-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26159306

RESUMEN

We have designed mitochondrially targeted transcription activator-like effector nucleases or mitoTALENs to cleave specific sequences in the mitochondrial DNA (mtDNA) with the goal of eliminating mtDNA carrying pathogenic point mutations. To test the generality of the approach, we designed mitoTALENs to target two relatively common pathogenic mtDNA point mutations associated with mitochondrial diseases: the m.8344A>G tRNA(Lys) gene mutation associated with myoclonic epilepsy with ragged red fibers (MERRF) and the m.13513G>A ND5 mutation associated with MELAS/Leigh syndrome. Transmitochondrial cybrid cells harbouring the respective heteroplasmic mtDNA mutations were transfected with the respective mitoTALEN and analyzed after different time periods. MitoTALENs efficiently reduced the levels of the targeted pathogenic mtDNAs in the respective cell lines. Functional assays showed that cells with heteroplasmic mutant mtDNA were able to recover respiratory capacity and oxidative phosphorylation enzymes activity after transfection with the mitoTALEN. To improve the design in the context of the low complexity of mtDNA, we designed shorter versions of the mitoTALEN specific for the MERRF m.8344A>G mutation. These shorter mitoTALENs also eliminated the mutant mtDNA. These reductions in size will improve our ability to package these large sequences into viral vectors, bringing the use of these genetic tools closer to clinical trials.


Asunto(s)
Vectores Genéticos , Mutación , Fosforilación Oxidativa , Animales , Línea Celular , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Desoxirribonucleasas/metabolismo , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Dosificación de Gen , Expresión Génica , Orden Génico , Terapia Genética , Vectores Genéticos/genética , Humanos , Hidrólisis , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/terapia , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación Puntual , Transporte de Proteínas , Factores de Transcripción/metabolismo
20.
Mitochondrion ; 23: 71-80, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25638392

RESUMEN

Mitochondrial defects are the cause of numerous disorders affecting the oxidative phosphorylation system (OXPHOS) in humans leading predominantly to neurological and muscular degeneration. The molecular origin, manifestations, and progression of mitochondrial diseases have a broad spectrum, which makes very challenging to find a globally effective therapy. The study of the molecular mechanisms underlying the mitochondrial dysfunction indicates that there is a wide range of pathways, enzymes and molecules that can be potentially targeted for therapeutic purposes. Therefore, focusing on the pathology of the disease is essential to design new treatments. In this review, we will summarize and discuss the different therapeutic interventions tested in some mouse models of mitochondrial diseases emphasizing the molecular mechanisms of action and their potential applications.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedades Mitocondriales/terapia , Proteínas Mitocondriales/deficiencia , Oxidorreductasas/deficiencia , Animales , Dieta/métodos , Terapia Genética/métodos , Ratones , Enfermedades Mitocondriales/genética , Biogénesis de Organelos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...