Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
J Exp Bot ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38622943

RESUMEN

Plant quiescence and seed dormancy can be triggered by reduced oxygen availability. Under water, oxygen depletion caused by flooding can culminate in a quiescent state, which is a plant strategy for energy preservation and survival. In adult plants, a quiescent state can be activated by sugar starvation, culminating in metabolic depression. In seeds, secondary dormancy can be activated by reduced oxygen availability, which creates an unfavourable state for germination. The physical dormancy of some seeds and buds includes barriers to external conditions, which indirectly results in hypoxia. The molecular processes that support seed dormancy and plant survival through quiescence under hypoxia include the N-degron pathway, which enables the modulation of ethylene responsive factors of group VII and downstream targets. This oxygen- and nitric oxide-dependent mechanism interacts with phytohormone-related pathways to control growth.

2.
Funct Plant Biol ; 512024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38442921

RESUMEN

Orchids (Phalaenopsis spp.) growing in tropical and subtropical regions are epiphytes. As such, they grow on trees with the root system utilised to anchor themselves to tree branches. These roots are highly specialised, display a large diameter and are often green, suggesting the ability to carry out photosynthesis. However, the role of photosynthesis in orchid roots is controversial. Orchids that are leafless can photosynthesise in their roots, thus indicating that some orchid roots carry out photosynthesis in a similar manner to leaves. However, the primary site of photosynthesis in orchids are in their leaves, and the roots of epiphytic orchids may mostly conduct internal refixation of respiratory CO2 . Besides contributing to the overall carbon metabolism of orchid plants, oxygen produced through root photosynthesis may also be important by alleviating potential root hypoxia. The bulky tissue of most epiphytic orchid roots suggests that oxygen diffusion in these roots can be limited. Here, we demonstrate that the bulky roots of a widely commercially cultivated orchid belonging to the genus Phalaenopsis are hypoxic in the dark. These roots are photosynthetically active and produce oxygen when exposed to light, thus mitigating root hypoxia.


Asunto(s)
Orchidaceae , Fotosíntesis , Árboles , Hipoxia , Oxígeno
3.
Mol Plant ; 17(3): 377-394, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38243593

RESUMEN

Oxygen is essential for plant growth and development. Hypoxia occurs in plants due to limited oxygen availability following adverse environmental conditions as well in hypoxic niches in otherwise normoxic environments. However, the existence and functional integration of spatiotemporal oxygen dynamics with plant development remains unknown. In animal systems dynamic fluctuations in oxygen availability are known as cyclic hypoxia. In this study, we demonstrate that cyclic fluctuations in internal oxygen levels occur in young emerging leaves of Arabidopsis plants. Cyclic hypoxia in plants is based on a mechanism requiring the ETHYLENE RESPONSE FACTORS type VII (ERFVII) that are central components of the oxygen-sensing machinery in plants. The ERFVII-dependent mechanism allows precise adjustment of leaf growth in response to carbon status and oxygen availability within plant cells. This study thus establishes a functional connection between internal spatiotemporal oxygen dynamics and developmental processes of plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Etilenos , Oxígeno/metabolismo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo , Hipoxia , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Funct Plant Biol ; 512024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38266278

RESUMEN

Flooding is a predominant abiotic stress for cultivated plants, including barley. This cereal crop shows a large adaptability to different environmental conditions, suggesting the presence of key traits to tolerate adverse conditions. During germination, genetic variations account for dissimilarities in flooding tolerance. However, differences in the seed microbiota may also contribute to tolerance/sensitivity during seedling establishment. This work investigated differences in microbiome among the grains of barley accessions. Two barley phenotypes were compared, each either tolerant or sensitive to a short submergence period followed by a recovery. The study used a metataxonomic analysis based on 16S ribosomal RNA gene sequencing and subsequent functional prediction. Our results support the hypothesis that bacterial microbiota inhabiting the barley seeds are different between sensitive and tolerant barley accessions, which harbour specific bacterial phyla and families. Finally, bacteria detected in tolerant barley accessions show a peculiar functional enrichment that suggests a possible connection with successful germination and seedling establishment.


Asunto(s)
Hordeum , Microbiota , Humanos , Hordeum/genética , Hordeum/microbiología , Genotipo , Plantones/genética , Semillas/genética , Microbiota/genética , Bacterias/genética
5.
Trends Plant Sci ; 29(5): 589-604, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38177013

RESUMEN

Over the past decade, progress has been made in the characterization of anthocyanin synthesis in fruits of plants belonging to the tomato clade. The genomic elements underlying the activation of the process were identified, providing the basis for understanding how the pathway works in these species. In this review we explore the genetic mechanisms that have been characterized to date, and detail the various wild relatives of the tomato, which have been crucial for recovering ancestral traits that were probably lost during evolution from green-purple to yellow and red tomatoes. This knowledge should help developing strategies to further enhance the status of the commercial tomato lines on sale, based on both genome editing and breeding techniques.


Asunto(s)
Antocianinas , Frutas , Solanum lycopersicum , Antocianinas/biosíntesis , Antocianinas/genética , Antocianinas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas
6.
J Exp Bot ; 75(5): 1217-1233, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-37991267

RESUMEN

With recent progress in active research on flooding and hypoxia/anoxia tolerance in native and agricultural crop plants, vast knowledge has been gained on both individual tolerance mechanisms and the general mechanisms of flooding tolerance in plants. Research on carbohydrate consumption, ethanolic and lactic acid fermentation, and their regulation under stress conditions has been accompanied by investigations on aerenchyma development and the emergence of the radial oxygen loss barrier in some plant species under flooded conditions. The discovery of the oxygen-sensing mechanism in plants and unravelling the intricacies of this mechanism have boosted this very international research effort. Recent studies have highlighted the importance of oxygen availability as a signalling component during plant development. The latest developments in determining actual oxygen concentrations using minute probes and molecular sensors in tissues and even within cells have provided new insights into the intracellular effects of flooding. The information amassed during recent years has been used in the breeding of new flood-tolerant crop cultivars. With the wealth of metabolic, anatomical, and genetic information, novel holistic approaches can be used to enhance crop species and their productivity under increasing stress conditions due to climate change and the subsequent changes in the environment.


Asunto(s)
Inundaciones , Oxígeno , Oxígeno/metabolismo , Fitomejoramiento , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Desarrollo de la Planta
7.
J Biol Chem ; 299(12): 105366, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37863264

RESUMEN

Hypoxic responses in plants involve Plant Cysteine Oxidases (PCOs). They catalyze the N-terminal cysteine oxidation of Ethylene Response Factors VII (ERF-VII) in an oxygen-dependent manner, leading to their degradation via the cysteine N-degron pathway (Cys-NDP) in normoxia. In hypoxia, PCO activity drops, leading to the stabilization of ERF-VIIs and subsequent hypoxic gene upregulation. Thus far, no chemicals have been described to specifically inhibit PCO enzymes. In this work, we devised an in vivo pipeline to discover Cys-NDP effector molecules. Budding yeast expressing AtPCO4 and plant-based ERF-VII reporters was deployed to screen a library of natural-like chemical scaffolds and was further combined with an Arabidopsis Cys-NDP reporter line. This strategy allowed us to identify three PCO inhibitors, two of which were shown to affect PCO activity in vitro. Application of these molecules to Arabidopsis seedlings led to an increase in ERF-VII stability, induction of anaerobic gene expression, and improvement of tolerance to anoxia. By combining a high-throughput heterologous platform and the plant model Arabidopsis, our synthetic pipeline provides a versatile system to study how the Cys-NDP is modulated. Its first application here led to the discovery of at least two hypoxia-mimicking molecules with the potential to impact plant tolerance to low oxygen stress.


Asunto(s)
Proteínas de Arabidopsis , Cisteína-Dioxigenasa , Inhibidores Enzimáticos , Bibliotecas de Moléculas Pequeñas , Humanos , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cisteína/metabolismo , Cisteína-Dioxigenasa/antagonistas & inhibidores , Cisteína-Dioxigenasa/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Oxígeno/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Plantones/efectos de los fármacos , Anaerobiosis , Degrones , Activación Enzimática/efectos de los fármacos , Proteínas Recombinantes/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Inhibidores Enzimáticos/farmacología
8.
Front Genet ; 14: 1213839, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37662843

RESUMEN

In this review, we focus on ethylene transcription factors (ERFs), which are a crucial family of transcription factors that regulate plant development and stress responses. ERFVII transcription factors have been identified and studied in several crop species, including rice, wheat, maize, barley, and soybean. These transcription factors are known to be involved in regulating the plant's response to low oxygen stress-hypoxia and could thus improve crop yields under suboptimal growing conditions. In rice (Oryza sativa) several ERFVII genes have been identified and characterized, including SUBMERGENCE 1A (SUB1A), which enables rice to tolerate submergence. The SUB1A gene was used in the development of SUB1 rice varieties, which are now widely grown in flood-prone areas and have been shown to improve yields and farmer livelihoods. The oxygen sensor in plants was discovered using the model plant Arabidopsis. The mechanism is based on the destabilization of ERFVII protein via the N-degron pathway under aerobic conditions. During hypoxia, the stabilized ERFVIIs translocate to the nucleus where they activate the transcription of hypoxia-responsive genes (HRGs). In summary, the identification and characterization of ERFVII transcription factors and their mechanism of action could lead to the development of new crop varieties with improved tolerance to low oxygen stress, which could have important implications for global food security.

9.
J Exp Bot ; 74(14): 4277-4289, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37100757

RESUMEN

Global climate change has dramatically increased flooding events, which have a strong impact on crop production. Barley (Hordeum vulgare) is one of the most important cereals and its cultivation includes a broad range of different environments. We tested the capacity to germinate of a large barley panel after a short period of submergence followed by a period of recovery. We demonstrate that sensitive barley varieties activate underwater secondary dormancy because of a lower permeability to oxygen dissolved in water. In sensitive barley accessions, secondary dormancy is removed by nitric oxide donors. The results of a genome-wide association study uncovered a Laccase gene located in a region of significant marker-trait association that is differently regulated during grain development and plays a key role in this process. Our findings will help breeders to improve the genetics of barley, thereby increasing the capacity of seeds to germinate after a short period of flooding.


Asunto(s)
Germinación , Hordeum , Germinación/genética , Hordeum/genética , Estudio de Asociación del Genoma Completo , Semillas/genética , Grano Comestible/genética , Hipoxia
10.
BMC Plant Biol ; 23(1): 148, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36935480

RESUMEN

BACKGROUND: A high content in anthocyanins, for their health beneficial properties, represents an added value for fruits and vegetables. Tomato (Solanum lycopersicum) is one of the most consumed vegetables worldwide and is rich in vitamins and carotenoids. In recent years, purple-skinned tomatoes, enriched of anthocyanins, were produced recovering allelic variants from wild Solanum species. The molecular basis of the Anthocyanin fruit (Aft) locus, exploited by breeders to activate the anthocyanin synthesis in tomato epicarp, has been recently identified in the correct splicing of the R2R3 MYB gene AN2like. Aubergine (Abg) is a tomato accession which introgressed from Solanum lycopersicoides a locus activating the synthesis of anthocyanins in the fruit. The Abg locus was mapped in the region of chromosome 10 containing Aft and the possibility that Abg and Aft represented alleles of the same gene was hypothesized. RESULTS: We dissected the R2R3 MYB gene cluster located in the Abg genomic introgression and demonstrated that AN2like is correctly spliced in Abg plants and is expressed in the fruit epicarp. Moreover, its silencing specifically inhibits the anthocyanin synthesis. The Abg allele of AN2like undergoes alternative splicing and produces two proteins with different activities. Furthermore, in Abg the master regulator of the anthocyanin synthesis in tomato vegetative tissues, AN2, is very poorly expressed. Finally, a novel R2R3 MYB gene was identified: it encodes another positive regulator of the pathway, whose activity was lost in tomato and in its closest relatives. CONCLUSION: In this study, we propose that AN2like is responsible of the anthocyanin production in Abg fruits. Unlike wild type tomato, the Abg allele of AN2like is active and able to regulate its targets. Furthermore, in Abg alternative splicing leads to two forms of AN2like with different activities, likely representing a novel type of regulation of anthocyanin synthesis in tomato.


Asunto(s)
Solanum lycopersicum , Solanum melongena , Solanum , Solanum lycopersicum/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Antocianinas/metabolismo , Solanum melongena/genética , Solanum/genética , Plantas Modificadas Genéticamente/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Proc Natl Acad Sci U S A ; 120(3): e2212474120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36626556

RESUMEN

Plants respond to oxygen deprivation by activating the expression of a set of hypoxia-responsive genes (HRGs). The master regulator of this process is a small group of transcription factors belonging to group VII of the ethylene response factors (ERF-VIIs). ERF-VIIs are highly unstable under aerobic conditions due to the continuous oxidation of their characteristic Cys residue at the N terminus by plant cysteine oxidases (PCOs). Under hypoxia, PCOs are inactive and the ERF-VIIs activate transcription of the HRGs required for surviving hypoxia. However, if the plant exposed to hypoxia has limited sugar reserves, the activity of ERF-VIIs is severely dampened. This suggests that oxygen sensing by PCO/ERF-VII is fine-tuned by another sensing pathway, related to sugar or energy availability. Here, we show that oxygen sensing by PCO/ERF-VII is controlled by the energy sensor target of rapamycin (TOR). Inhibition of TOR by genetic or pharmacological approaches leads to a much lower induction of HRGs. We show that two serine residues at the C terminus of RAP2.12, a major ERF-VII, are phosphorylated by TOR and are needed for TOR-dependent activation of transcriptional activity of RAP2.12. Our results demonstrate that oxygen and energy sensing converge in plants to ensure an appropriate transcription of genes, which is essential for surviving hypoxia. When carbohydrate metabolism is inefficient in producing ATP because of hypoxia, the lower ATP content reduces TOR activity, thus attenuating the efficiency of induction of HRGs by the ERF-VIIs. This homeostatic control of the hypoxia-response is required for the plant to survive submergence.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Oxígeno , Fosfatidilinositol 3-Quinasas , Adenosina Trifosfato/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carbohidratos , Cisteína-Dioxigenasa/metabolismo , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hipoxia , Oxígeno/metabolismo , Azúcares/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo
12.
Plant Cell Environ ; 46(2): 607-620, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36479691

RESUMEN

Group VII ethylene response factors (ERF-VII) are plant-specific transcription factors (TFs) known for their role in the activation of hypoxia-responsive genes under low oxygen stress but also in plant endogenous hypoxic niches. However, their function in the microaerophilic nitrogen-fixing nodules of legumes has not yet been investigated. We investigated regulation and the function of the two Medicago truncatula ERF-VII TFs (MtERF74 and MtERF75) in roots and nodules, MtERF74 and MtERF75 in response to hypoxia stress and during the nodulation process using an RNA interference strategy and targeted proteolysis of MtERF75. Knockdown of MtERF74 and MtERF75 partially blocked the induction of hypoxia-responsive genes in roots exposed to hypoxia stress. In addition, a significant reduction in nodulation capacity and nitrogen fixation activity was observed in mature nodules of double knockdown transgenic roots. Overall, the results indicate that MtERF74 and MtERF75 are involved in the induction of MtNR1 and Pgb1.1 expression for efficient Phytogb-nitric oxide respiration in the nodule.


Asunto(s)
Medicago truncatula , Fijación del Nitrógeno , Fijación del Nitrógeno/genética , Nódulos de las Raíces de las Plantas/metabolismo , Medicago truncatula/fisiología , Etilenos/metabolismo , Hipoxia/metabolismo , Simbiosis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Sci Rep ; 12(1): 14655, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-36038704

RESUMEN

Iodine is an essential micronutrient for humans, but its role in plant physiology was debated for nearly a century. Recently its functional involvement in plant nutrition and stress-protection collected the first experimental evidence. This study wanted to examine in depth the involvement of iodine in tomato plant nutrition, also evaluating its potential on salt stress tolerance. To this end, iodine was administered at dosages effective for micronutrients to plants grown in different experimental systems (growth chamber and greenhouse), alone or in presence of a mild-moderate NaCl-salinity stress. Plant vegetative fitness, fruit yield and quality, biochemical parameters and transcriptional activity of selected stress-responsive genes were evaluated. In unstressed plants, iodine increased plant growth and fruit yield, as well as some fruit qualitative parameters. In presence of salt stress, iodine mitigated some of the negative effects observed, according to the iodine/NaCl concentrations used. Some fruit parameters and the expressions of the stress marker genes analyzed were affected by the treatments, explaining, at least in part, the increased plant tolerance to the salinity. This study thus reconfirms the functional involvement of iodine in plant nutrition and offers evidence towards the use of minute amounts of it as a beneficial nutrient for crop production.


Asunto(s)
Yodo , Solanum lycopersicum , Frutas/genética , Humanos , Yodo/metabolismo , Solanum lycopersicum/metabolismo , Micronutrientes/metabolismo , Salinidad , Cloruro de Sodio/farmacología
14.
Plant Physiol ; 190(4): 2617-2636, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-35972350

RESUMEN

A plant's oxygen supply can vary from normal (normoxia) to total depletion (anoxia). Tolerance to anoxia is relevant to wetland species, rice (Oryza sativa) cultivation, and submergence tolerance of crops. Decoding and transmitting calcium (Ca) signals may be an important component to anoxia tolerance; however, the contribution of intracellular Ca transporters to this process is poorly understood. Four functional cation/proton exchangers (CAX1-4) in Arabidopsis (Arabidopsis thaliana) help regulate Ca homeostasis around the vacuole. Our results demonstrate that cax1 mutants are more tolerant to both anoxic conditions and submergence. Using phenotypic measurements, RNA-sequencing, and proteomic approaches, we identified cax1-mediated anoxia changes that phenocopy changes present in anoxia-tolerant crops: altered metabolic processes, diminished reactive oxygen species production post anoxia, and altered hormone signaling. Comparing wild-type and cax1 expressing genetically encoded Ca indicators demonstrated altered cytosolic Ca signals in cax1 during reoxygenation. Anoxia-induced Ca signals around the plant vacuole are involved in the control of numerous signaling events related to adaptation to low oxygen stress. This work suggests that cax1 anoxia response pathway could be engineered to circumvent the adverse effects of flooding that impair production agriculture.


Asunto(s)
Arabidopsis , Proteínas de Transporte de Catión , Humanos , Vacuolas/metabolismo , Calcio/metabolismo , Antiportadores/metabolismo , Protones , Proteómica , Proteínas de Transporte de Catión/metabolismo , Arabidopsis/metabolismo , Hipoxia/genética , Hipoxia/metabolismo , Oxígeno/metabolismo
15.
New Phytol ; 235(6): 2176-2182, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35794849

RESUMEN

Plant microRNAs (miRNAs) are small regulatory RNAs that are encoded by endogenous miRNA genes and regulate gene expression through gene silencing, by inducing degradation of their target messenger RNA or by inhibiting its translation. Some miRNAs are mobile molecules inside the plant, and increasing experimental evidence has demonstrated that miRNAs represent molecules that are exchanged between plants, their pathogens, and parasitic plants. It has also been shown that miRNAs are secreted into the external growing medium and that these miRNAs regulate gene expression and the phenotype of nearby receiving plants, thus defining a new concept in plant communication. However, the mechanism of miRNA secretion and uptake by plant cells still needs to be elucidated.


Asunto(s)
Arabidopsis , MicroARNs , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , MicroARNs/genética , MicroARNs/metabolismo , Plantas/genética , Plantas/metabolismo , ARN Mensajero/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo
16.
Front Plant Sci ; 13: 908349, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845658

RESUMEN

Flooding events caused by severe rains and poor soil drainage can interfere with plant germination and seedling establishment. Rice is one of the cereal crops that has unique germination strategies under flooding. One of these strategies is based on the fast coleoptile elongation in order to reach the water surface and re-establish the contact with the air. Microorganisms can contribute to plant health via plant growth promoters and provide protection from abiotic stresses. To characterise the community composition of the microbiome in rice germination under submergence, a 16S rRNA gene profiling metagenomic analysis was performed of temperate japonica rice varieties Arborio and Lamone seedlings, which showed contrasting responses in terms of coleoptile length when submerged. This analysis showed a distinct microbiota composition of Arborio seeds under submergence, which are characterised by the development of a long coleoptile. To examine the potential function of microbial communities under submergence, culturable bacteria were isolated, identified and tested for plant growth-promoting activities. A subgroup of isolated bacteria showed the capacity to hydrolyse starch and produce indole-related compounds under hypoxia. Selected bacteria were inoculated in seeds to evaluate their effect on rice under submergence, showing a response that is dependent on the rice genotype. Our findings suggest that endophytic bacteria possess plant growth-promoting activities that can substantially contribute to rice seedling establishment under submergence.

17.
Nat Plants ; 7(10): 1379-1388, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34650259

RESUMEN

Plants seem to take up exogenous RNA that was artificially designed to target specific genes, followed by activation of the RNA interference (RNAi) machinery. It is, however, not known whether plants use RNAs themselves as signalling molecules in plant-to-plant communication, other than evidence that an exchange of small RNAs occurs between parasitic plants and their hosts. Exogenous RNAs from the environment, if taken up by some living organisms, can indeed induce RNAi. This phenomenon has been observed in nematodes and insects, and host Arabidopsis cells secrete exosome-like extracellular vesicles to deliver plant small RNAs into Botrytis cinerea. Here we show that micro-RNAs (miRNAs) produced by plants act as signalling molecules affecting gene expression in other, nearby plants. Exogenous miRNAs, such as miR156 and miR399, trigger RNAi via a mechanism requiring both AGO1 and RDR6. This emphasizes that the production of secondary small interfering RNAs is required. This evidence highlights the existence of a mechanism in which miRNAs represent signalling molecules that enable communication between plants.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Interferencia de ARN , ARN de Planta/genética , Arabidopsis/metabolismo
18.
Sci Rep ; 11(1): 17010, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34426588

RESUMEN

Iodine deficiency represents a public health problem worldwide. To increase the amount of iodine in the diet, biofortification strategies of plants have been tried. They rely on the exogenous administration of iodine to increase its absorption and accumulation. However, iodine is not stable in plants and can be volatilized as methyl iodide through the action of specific methyltransferases encoded by the HARMLESS TO OZONE LAYER (HOL) genes. The release of methyl iodide in the atmosphere represents a threat for the environment due to its ozone depletion potential. Rice paddies are among the strongest producers of methyl iodide. Thus, the agronomic approach of iodine biofortification is not appropriate for this crop, leading to further increases of iodine emissions. In this work, we used the genome editing CRISPR/Cas9 technology to knockout the rice HOL genes and investigate their function. OsHOL1 resulted a major player in methyl iodide production, since its knockout abolished the process. Moreover, its overexpression reinforced it. Conversely, knockout of OsHOL2 did not produce effects. Our experiments helped elucidating the function of the rice HOL genes, providing tools to develop new rice varieties with reduced iodine emissions and thus more suitable for biofortification programs without further impacting on the environment.


Asunto(s)
Técnicas de Inactivación de Genes , Genes de Plantas , Hidrocarburos Yodados/aislamiento & purificación , Oryza/genética , Secuencia de Bases , Sistemas CRISPR-Cas/genética , Regulación de la Expresión Génica de las Plantas , Luciferasas/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Mutagénesis/genética , Hojas de la Planta/genética , Multimerización de Proteína , Fracciones Subcelulares/metabolismo
19.
Front Plant Sci ; 12: 616868, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33679830

RESUMEN

Little is known about the role of iodine in plant physiology. We evaluated the impact of low concentrations of iodine on the phenotype, transcriptome and proteome of Arabidopsis thaliana. Our experiments showed that removal of iodine from the nutrition solution compromises plant growth, and restoring it in micromolar concentrations is beneficial for biomass accumulation and leads to early flowering. In addition, iodine treatments specifically regulate the expression of several genes, mostly involved in the plant defence response, suggesting that iodine may protect against both biotic and abiotic stress. Finally, we demonstrated iodine organification in proteins. Our bioinformatic analysis of proteomic data revealed that iodinated proteins identified in the shoots are mainly associated with the chloroplast and are functionally involved in photosynthetic processes, whereas those in the roots mostly belong and/or are related to the action of various peroxidases. These results suggest the functional involvement of iodine in plant nutrition.

20.
Antioxidants (Basel) ; 10(2)2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33672303

RESUMEN

Reactive oxygen species (ROS) are part of aerobic environments, and variations in the availability of oxygen (O2) in the environment can lead to altered ROS levels. In plants, the O2 sensing machinery guides the molecular response to low O2, regulating a subset of genes involved in metabolic adaptations to hypoxia, including proteins involved in ROS homeostasis and acclimation. In addition, nitric oxide (NO) participates in signaling events that modulate the low O2 stress response. In this review, we summarize recent findings that highlight the roles of ROS and NO under environmentally or developmentally defined low O2 conditions. We conclude that ROS and NO are emerging regulators during low O2 signalling and key molecules in plant adaptation to flooding conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...