Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Exp Eye Res ; 224: 109238, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36067823

RESUMEN

FMRP, the fragile X mental retardation protein coded by the FMR1 gene, is an RNA-binding protein that assists transport, stabilization and translational regulation of specific synaptic mRNAs. Its expression has been found in multiple cell types of central nervous system (CNS) including glial cells where its involvement in glutamate neurotransmitter homeostasis have been shown. Indeed, glutamate homeostasis deficit has been observed in absence of FMRP in-vivo in cortex and hippocampus structures as well as in vitro on astroglial cell culture. Interestingly, the retina which is an extension of the CNS is presenting electrophysiological alterations in absence of FMRP in both human and murine models suggesting neurotransmitter impairments. Therefore, we investigate the consequences of Fmrp absence on Glutamate-Glutamine cycle in whole retinas and primary retinal Müller cells culture which are the main glial cells of the retina. Using the Fmr1-/y mice, we have shown in vivo and in vitro that the absence of Fmrp in Müller cells is characterized by loss of Glutamate-Glutamine cycle homeostasis due to a lower Glutamine Synthetase protein expression and activity. The lack of Fmrp in the retina induces a reduced flow of glutamine synthesis. Our data established for the first time in literature a direct link between the lack of Fmrp and neurotransmitter homeostasis in the retina.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Ratones , Animales , Humanos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Glutamina , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo , Retina/metabolismo , Fenotipo , Glutamatos/genética , Ratones Noqueados
2.
J Med Case Rep ; 16(1): 180, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35509069

RESUMEN

BACKGROUND: Mutations in the genes encoding the large-conductance calcium-activated potassium channel, especially KCNMA1 encoding its α-subunit, have been linked to several neurological features, including intellectual disability or autism. Associated with neurodevelopmental phenotypes, sensory function disturbances are considered to be important clinical features contributing to a variety of behavioral impairments. Large-conductance calcium-activated potassium channels are important in regulating neurotransmission in sensory circuits, including visual pathways. Deficits in visual function can contribute substantially to poor quality of life, while therapeutic approaches aimed at addressing such visual deficits represent opportunities to improve neurocognitive and neurobehavioral outcomes. CASE PRESENTATION: We describe the case of a 25-year-old Caucasian male with autism spectrum disorder and severe intellectual disability presenting large-conductance calcium-activated potassium channel haploinsufficiency due to a de novo balanced translocation (46, XY, t [9; 10] [q23;q22]) disrupting the KCNMA1 gene. The visual processing pathway of the subject was evaluated using both electroretinography and visual contrast sensitivity, indicating that both retinal bipolar cell function and contrast discrimination performance were reduced by approximately 60% compared with normative control values. These findings imply a direct link between KCNMA1 gene disruption and visual dysfunction in humans. In addition, the subject reported photophobia but did not exhibit strabismus, nystagmus, or other visual findings on physical examination. CONCLUSIONS: This case study of a subject with large-conductance calcium-activated potassium channel haploinsufficiency and photophobia revealed a visual pathway deficit at least at the retinal level, with diminished retinal light capture likely due to bipolar cell dysfunction and an associated loss of contrast sensitivity. The data suggest that large-conductance calcium-activated potassium channels play an important role in the normal functioning of the visual pathway in humans, and that their disruption may play a role in visual and other sensory system symptomatology in large-conductance calcium-activated potassium channelopathies or conditions where disruption of large-conductance calcium-activated potassium channel function is a relevant feature of the pathophysiology, such as fragile X syndrome. This work suggests that the combined use of physiological (electroretinography) and functional (contrast sensitivity) approaches may have utility as a biomarker strategy for identifying and characterizing visual processing deficits in individuals with large-conductance calcium-activated potassium channelopathy. Trial registration ID-RCB number 2019-A01015-52, registered 17/05/2019.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Calcio , Haploinsuficiencia , Humanos , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/genética , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Masculino , Fotofobia , Potasio , Calidad de Vida , Órganos de los Sentidos
3.
J Neurodev Disord ; 13(1): 45, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34625026

RESUMEN

BACKGROUND: Disturbances in sensory function are an important clinical feature of neurodevelopmental disorders such as fragile X syndrome (FXS). Evidence also directly connects sensory abnormalities with the clinical expression of behavioral impairments in individuals with FXS; thus, positioning sensory function as a potential clinical target for the development of new therapeutics. Using electroretinography (ERG) and contrast sensitivity (CS), we previously reported the presence of sensory deficits in the visual system of the Fmr1-/y genetic mouse model of FXS. The goals of the current study were two-folds: (1) to assess the feasibility of measuring ERG and CS as a biomarker of sensory deficits in individuals with FXS, and (2) to investigate whether the deficits revealed by ERG and CS in Fmr1-/y mice translate to humans with FXS. METHODS: Both ERG and CS were measured in a cohort of male individuals with FXS (n = 20, 18-45 years) and age-matched healthy controls (n = 20, 18-45 years). Under light-adapted conditions, and using both single flash and flicker (repeated train of flashes) stimulation protocols, retinal function was recorded from individual subjects using a portable, handheld, full-field flash ERG device (RETeval®, LKC Technologies Inc., Gaithersburg, MD, USA). CS was assessed in each subject using the LEA SYMBOLS® low-contrast test (Good-Lite, Elgin, IL, USA). RESULTS: Data recording was successfully completed for ERG and assessment of CS in most individuals from both cohorts demonstrating the feasibility of these methods for use in the FXS population. Similar to previously reported findings from the Fmr1-/y genetic mouse model, individuals with FXS were found to exhibit reduced b-wave and flicker amplitude in ERG and an impaired ability to discriminate contrasts compared to healthy controls. CONCLUSIONS: This study demonstrates the feasibility of using ERG and CS for assessing visual deficits in FXS and establishes the translational validity of the Fmr1-/y mice phenotype to individuals with FXS. By including electrophysiological and functional readouts, the results of this study suggest the utility of both ERG and CS (ERG-CS) as complementary translational biomarkers for characterizing sensory abnormalities found in FXS, with potential applications to the clinical development of novel therapeutics that target sensory function abnormalities to treat core symptomatology in FXS. TRIAL REGISTRATION: ID-RCB number 2019-A01015-52 registered on the 17 May 2019.


Asunto(s)
Síndrome del Cromosoma X Frágil , Animales , Biomarcadores , Sensibilidad de Contraste , Electrorretinografía , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/complicaciones , Síndrome del Cromosoma X Frágil/diagnóstico , Síndrome del Cromosoma X Frágil/genética , Masculino , Ratones
4.
Nutrients ; 13(9)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34579093

RESUMEN

To prevent ocular pathologies, new generation of dietary supplements have been commercially available. They consist of nutritional supplement mixing components known to provide antioxidative properties, such as unsaturated fatty acid, resveratrol or flavonoids. However, to date, only one preclinical study has evaluated the impact of a mixture mainly composed of those components (Nutrof Total®) on the retina and demonstrated that in vivo supplementation prevents the retina from structural and functional injuries induced by light. Considering the crucial role played by the glial Müller cells in the retina, particularly to regulate the glutamate cycle to prevent damage in oxidative stress conditions, we questioned the impact of this ocular supplement on the glutamate metabolic cycle. To this end, various molecular aspects associated with the glutamate/glutamine metabolism cycle in Müller cells were investigated on primary Müller cells cultures incubated, or not, with the commercially mix supplement before being subjected, or not, to oxidative conditions. Our results demonstrated that in vitro supplementation provides guidance of the glutamate/glutamine cycle in favor of glutamine synthesis. These results suggest that glutamine synthesis is a crucial cellular process of retinal protection against oxidative damages and could be a key step in the previous in vivo beneficial results provided by the dietary supplementation.


Asunto(s)
Antioxidantes/farmacología , Células Ependimogliales/efectos de los fármacos , Ácidos Grasos Omega-3/farmacología , Glutamina/biosíntesis , Estrés Oxidativo/efectos de los fármacos , Retina/efectos de los fármacos , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Medios de Cultivo/farmacología , Células Ependimogliales/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Ácido Glutámico/farmacología , Ratones
5.
Mol Psychiatry ; 26(5): 1606-1618, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32327736

RESUMEN

Autism spectrum disorders (ASD) are complex neurodevelopmental disorders with a very large number of risk loci detected in the genome. However, at best, each of them explains rare cases, the majority being idiopathic. Genomic data on ASD derive mostly from post-mortem brain analyses or cell lines derived from blood or patient-specific induced pluripotent stem cells (iPSCS). Therefore, the transcriptional and regulatory architecture of the nervous system, particularly during early developmental periods, remains highly incomplete. To access the critical disturbances that may have occurred during pregnancy or early childhood, we recently isolated stem cells from the nasal cavity of anesthetized patients diagnosed for ASD and compared them to stem cells from gender-matched control individuals without neuropsychiatric disorders. This allowed us to discover MOCOS, a non-mutated molybdenum cofactor sulfurase-coding gene that was under-expressed in the stem cells of most ASD patients of our cohort, disturbing redox homeostasis and synaptogenesis. We now report that a divergent transcription upstream of MOCOS generates an antisense long noncoding RNA, to which we coined the name COSMOC. Surprisingly, COSMOC is strongly under-expressed in all ASD patients of our cohort with the exception of a patient affected by Asperger syndrome. Knockdown studies indicate that loss of COSMOC reduces MOCOS expression, destabilizes lipid and energy metabolisms of stem cells, but also affects neuronal maturation and splicing of synaptic genes. Impaired expression of the COSMOC/MOCOS bidirectional unit might shed new lights on the origins of ASD that could be of importance for future translational studies.


Asunto(s)
Síndrome de Asperger , Trastorno del Espectro Autista , Células Madre Pluripotentes Inducidas , Trastornos del Neurodesarrollo , Sulfurtransferasas/genética , Trastorno del Espectro Autista/genética , Humanos , Sistema Nervioso
6.
F1000Res ; 9: 1482, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-35528205

RESUMEN

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and has been a global public health concern. Co-infection of SARS-CoV-2 and other respiratory syndrome has been rarely reported. We report coinfection of SARS-CoV-2 and 2009 H1N1 Influenza strain in a French patient with pneumonia leading to acute respiratory distress syndrome.  The patient also had a medical history of pulmonary sarcoidosis with a restrictive ventilatory syndrome, which would be a supplementary risk to develop a poor outcomes. This case highlights the possible coinfection of two severe SARS-CoV-2 and influenza H1N1 viruses, which presents a higher risk to extend the care duration. The overlapping clinical features of the two respiratory syndromes is a challenge, and awareness is required to recommend an early differential diagnosis.


Asunto(s)
COVID-19 , Coinfección , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Síndrome de Dificultad Respiratoria , Sarcoidosis Pulmonar , COVID-19/complicaciones , Humanos , Gripe Humana/complicaciones , Gripe Humana/diagnóstico , Síndrome de Dificultad Respiratoria/complicaciones , SARS-CoV-2
7.
Front Behav Neurosci ; 13: 228, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31680892

RESUMEN

Fragile X Syndrome (FXS), the most common inherited form of human intellectual disability (ID) associated with autistic-like behaviors, is characterized by dys-sensitivity to sensory stimuli, especially vision. In the absence of Fragile Mental Retardation Protein (FMRP), both retinal and cerebral structures of the visual pathway are impaired, suggesting that perception and integration of visual stimuli are altered. However, behavioral consequences of these defects remain unknown. In this study, we used male Fmr1 -/y mice to further define visual disturbances from a behavioral perspective by focusing on three traits characterizing visual modality: perception of depth, contrasts and movements. We performed specific tests (Optomotor Drum, Visual Cliff) to evaluate these visual modalities, their evolution from youth to adulthood, and to assess their involvement in a cognitive task. We show that Fmr1 -/y mice exhibit alteration in their visual skills, displaying impaired perspective perception, a drop in their ability to understand a moving contrasted pattern, and a defect in contrasts discrimination. Interestingly, Fmr1 -/y phenotypes remain stable over time from adolescence to late adulthood. Besides, we report that color and shape are meaningful for the achievement of a cognitive test involving object recognition. Altogether, these results underline the significance of visual behavior alterations in FXS conditions and relevance of assessing visual skills in neuropsychiatric models before performing behavioral tasks, such as cognitive assessments, that involve visual discrimination.

9.
Nat Commun ; 9(1): 5226, 2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30523277

RESUMEN

Silica particles induce lung inflammation and fibrosis. Here we show that stimulator of interferon genes (STING) is essential for silica-induced lung inflammation. In mice, silica induces lung cell death and self-dsDNA release in the bronchoalveolar space that activates STING pathway. Degradation of extracellular self-dsDNA by DNase I inhibits silica-induced STING activation and the downstream type I IFN response. Patients with silicosis have increased circulating dsDNA and CXCL10 in sputum, and patients with fibrotic interstitial lung disease display STING activation and CXCL10 in the lung. In vitro, while mitochondrial dsDNA is sensed by cGAS-STING in dendritic cells, in macrophages extracellular dsDNA activates STING independent of cGAS after silica exposure. These results reveal an essential function of STING-mediated self-dsDNA sensing after silica exposure, and identify DNase I as a potential therapy for silica-induced lung inflammation.


Asunto(s)
ADN/metabolismo , Proteínas de la Membrana/metabolismo , Neumonía/metabolismo , Dióxido de Silicio/metabolismo , Animales , Células Cultivadas , Quimiocina CXCL10/metabolismo , ADN/genética , Células Dendríticas/metabolismo , Humanos , Macrófagos/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Neumonía/genética , Dióxido de Silicio/química , Silicosis/metabolismo , Esputo/metabolismo
10.
Front Cell Neurosci ; 12: 96, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29681800

RESUMEN

Fragile X Syndrome (FXS) is caused by a deficiency in Fragile X Mental Retardation Protein (FMRP) leading to global sensorial abnormalities, among which visual defects represent a critical part. These visual defects are associated with cerebral neuron immaturity especially in the primary visual cortex. However, we recently demonstrated that retinas of adult Fmr1-/y mice, the FXS murine model, present molecular, cellular and functional alterations. However, no data are currently available on the evolution pattern of such defects. As retinal stimulation through Eye Opening (EO) is a crucial signal for the cerebral visual system maturation, we questioned the precocity of molecular and functional retinal phenotype. To answer this question, we studied the retinal molecular phenotype of Fmr1-/y mice before EO until adult age and the consequences of the retinal loss of Fmrp on retinal function in young and adult mice. We showed that retinal molecular defects are present before EO and remain stable at adult age, leading to electrophysiological impairments without any underlying structural changes. We underlined that loss of Fmrp leads to a wide range of defects in the retina, settled even before EO. Our work demonstrates a critical role of the sensorial dysfunction in the Fmr1-/y mice overall phenotype, and provides evidence that altered peripheral perception is a component of the sensory processing defect in FXS conditions.

11.
PLoS One ; 12(10): e0184475, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29020013

RESUMEN

Accumulating evidence suggests that developmental exposure to environmental chemicals may modify the course of brain development, ultimately leading to neuropsychiatric / neurodegenerative disorders later in life. In the present study, we assessed the impact of one of the most frequently used pesticides in both residential and agricultural applications - the synthetic pyrethroid cypermethrin (CYP) - on developmental neurotoxicity (DNT). Female mice were perinatally exposed to low doses of CYP (5 and 20 mg/kg body weight) from gestation to postnatal day 15. Behavioral analyses were performed during the offspring's early life and during adulthood. Postnatal analyses revealed that perinatal exposure to CYP disturbed motor development without modifying sensory and communicative skills. We found that later in life, CYP-exposed offspring expressed maladaptive behaviors in response to highly challenging tasks and abnormal sociability. Transcriptomic analyses performed in the offspring's brain at the end of the exposure, highlighted mitochondrial dysfunction as a relevant pathomechanism underlying CYP-induced DNT. Interestingly, several genes involved in proteostasis maintenance were also shown to be dysregulated suggesting that alterations in biogenesis, folding, trafficking and degradation of proteins may significantly contribute to CYP-related DNT. From a regulatory perspective, this study highlights that behavioral and transcriptomic analyses are complementary tools providing useful direction for better DNT characterization, and as such, should be used together more systematically.


Asunto(s)
Etología/métodos , Insecticidas/toxicidad , Lactancia/efectos de los fármacos , Trastornos del Neurodesarrollo/genética , Efectos Tardíos de la Exposición Prenatal/genética , Piretrinas/toxicidad , Transcriptoma/genética , Animales , Animales Recién Nacidos , Conducta Animal , Encéfalo/crecimiento & desarrollo , Cognición/efectos de los fármacos , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos CBA , Anotación de Secuencia Molecular , Trastornos del Neurodesarrollo/patología , Embarazo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Conducta Social , Estrés Fisiológico/efectos de los fármacos , Transcriptoma/efectos de los fármacos
12.
Front Cell Neurosci ; 10: 191, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27555806

RESUMEN

Neurogenesis, a process of generating functional neurons from neural precursors, occurs throughout life in restricted brain regions such as the subventricular zone (SVZ). During this process, newly generated neurons migrate along the rostral migratory stream to the olfactory bulb to replace granule cells and periglomerular neurons. This neuronal migration is pivotal not only for neuronal plasticity but also for adapted olfactory based behaviors. Perturbation of this highly controlled system by exogenous chemicals has been associated with neurodevelopmental disorders. We reported recently that perinatal exposure to low dose herbicide glufosinate ammonium (GLA), leads to long lasting behavioral defects reminiscent of Autism Spectrum Disorder-like phenotype in the offspring (Laugeray et al., 2014). Herein, we demonstrate that perinatal exposure to low dose GLA induces alterations in neuroblast proliferation within the SVZ and abnormal migration from the SVZ to the olfactory bulbs. These disturbances are not only concomitant to changes in cell morphology, proliferation and apoptosis, but are also associated with transcriptomic changes. Therefore, we demonstrate for the first time that perinatal exposure to low dose GLA alters SVZ neurogenesis. Jointly with our previous work, the present results provide new evidence on the link between molecular and cellular consequences of early life exposure to the herbicide GLA and the onset of ASD-like phenotype later in life.

13.
Clin Sci (Lond) ; 130(21): 1939-54, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27549113

RESUMEN

Glufosinate-ammonium (GLA), the active component of an herbicide, is known to cause neurotoxicity. GLA shares structural analogy with glutamate. It is a powerful inhibitor of glutamine synthetase (GS) and may bind to glutamate receptors. Since these potentials targets of GLA are present in lung and immune cells, we asked whether airway exposure to GLA may cause lung inflammation in mice. A single GLA exposure (1 mg/kg) induced seizures and inflammatory cell recruitment in the broncho-alveolar space, and increased myeloperoxidase (MPO), inducible NO synthase (iNOS), interstitial inflammation and disruption of alveolar septae within 6-24 h. Interleukin 1ß (IL-1ß) was increased and lung inflammation depended on IL-1 receptor 1 (IL-1R1). We demonstrate that glutamate receptor pathway is central, since the N-methyl-D-aspartate (NMDA) receptor inhibitor MK-801 prevented GLA-induced lung inflammation. Chronic exposure (0.2 mg/kg 3× per week for 4 weeks) caused moderate lung inflammation and enhanced airway hyperreactivity with significant increased airway resistance. In conclusion, GLA aerosol exposure causes glutamate signalling and IL-1R-dependent pulmonary inflammation with airway hyperreactivity in mice.


Asunto(s)
Aminobutiratos/toxicidad , Ácido Glutámico/inmunología , Herbicidas/toxicidad , Interleucina-1beta/inmunología , Neumonía/inmunología , Receptores de Interleucina-1/inmunología , Receptores de N-Metil-D-Aspartato/metabolismo , Aminobutiratos/inmunología , Animales , Herbicidas/inmunología , Humanos , Interleucina-1beta/genética , Ratones , Ratones Endogámicos C57BL , N-Metilaspartato , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/inmunología , Peroxidasa/genética , Peroxidasa/inmunología , Neumonía/etiología , Receptores de Interleucina-1/genética , Receptores de N-Metil-D-Aspartato/genética
14.
Public Health Genomics ; 19(3): 137-43, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27237134

RESUMEN

Personalised health care is an evolution, moving away from a disease-focused model of care, translating scientific and technological advances into benefits for patients, and placing them at the centre of the patients' health and care. Companion diagnostics emerge as a very specific and special group of in vitro diagnostics among the different technologies shaping the personalised health care spectrum. Companion diagnostics provide highly valuable information, allowing patients, health practitioners and payers to decide with a higher level of certainty on the potential benefits of a treatment or care pathway. Decreasing uncertainty may result in a more efficient selection of treatments and care, targeted at subpopulations that are most likely to benefit. Companion diagnostics account for a minimal portion of the already small expenditure on in vitro diagnostics (far less than 1% of total health care expenditure), and yet they provide the means to limit inefficient use of health care resources while optimising patient outcomes. It is clear that equal access to personalised health care is still an issue across the EU. One of the most common perceived barriers is affordability. The investment in companion diagnostics can provide long-term value for patients and health care systems, shifting resources to areas of need. Health systems do not fully recognise yet the value that companion diagnostics bring to make personalised health care more affordable across the EU. This inhibits patient access to personalised treatments and care, preventing improved outcomes. In many countries, market access frameworks for diagnostic tests are fragmented and not aligned with specific funding and reimbursement mechanisms, discouraging the use of these tests. Emerging evidence shows that patients are missing out on the appropriate tests and treatments while a reduction in the inefficient use of health care resources is not realised. This article outlines some of these market access barriers for companion diagnostics in the EU, including reimbursement challenges specific to some member states (Germany, the UK, and France). Furthermore, proposals addressing barriers and increasing timely patient access to companion diagnostics in the EU are presented.


Asunto(s)
Tecnología Biomédica , Accesibilidad a los Servicios de Salud , Técnicas de Diagnóstico Molecular , Medicina de Precisión/economía , Europa (Continente) , Humanos , Seguridad del Paciente
15.
Am J Med Genet A ; 170(7): 1806-12, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27113058

RESUMEN

Terminal deletion of the long arm of the chromosome 10 is a rare but well known abnormality, with a large phenotypic variability. Very few data are available about subtelomeric deletion 10q26 patients without intellectual disability. Herein, we report the case of a young adult with a classical 10q26.2qter deletion. She exhibited mainly short stature at birth and in childhood/adulthood without intellectual disability or behavioral problems. After clinical and neuropsychological assessments, we performed genomic array and transcriptomic analysis and compared our results to the data available in the literature. The patient presents a 6.525 Mb heterozygous 10q26.2qter deletion, encompassed 48 genes. Among those genes, DOCK1, C10orf90, and CALY previously described as potential candidate genes for intellectual disability, were partially or completed deleted. Interestingly, they were not deregulated as demonstrated by transcriptomic analysis. This allowed us to suggest that the mechanism involved in the deletion 10qter phenotype is much more complex that only the haploinsufficiency of DOCK1 or other genes encompassed in the deletion. Genomic and transcriptomic combined approach has to be considered to understand this pathogenesis. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Genómica , Discapacidad Intelectual/genética , Discapacidades para el Aprendizaje/genética , Transcriptoma/genética , Adolescente , Adulto , Niño , Preescolar , Deleción Cromosómica , Cromosomas Humanos Par 10/genética , Facies , Femenino , Estudios de Asociación Genética , Humanos , Discapacidad Intelectual/fisiopatología , Discapacidades para el Aprendizaje/fisiopatología , Masculino , Persona de Mediana Edad , Adulto Joven
16.
Neuroreport ; 27(7): 532-41, 2016 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-27031874

RESUMEN

Glufosinate-ammonium (GLA), the active component of a widely used herbicide, induces convulsions in rodents and humans. In mouse, intraperitoneal treatment with 75 mg/kg GLA generates repetitive tonic-clonic seizures associated with 100% mortality within 72 h after treatment. In this context, we characterized GLA-induced seizures, their histological consequences and the effectiveness of diazepam treatment. Epileptic discharges on electroencephalographic recordings appeared simultaneously in the hippocampus and the cerebral cortex. Diazepam treatment at 6 h immediately stopped the seizures and prevented animal death. However, intermittent seizures were recorded on electroencephalogram from 6 h after diazepam treatment until 24 h, but had disappeared after 15 days. In our model, neuronal activation (c-Fos immunohistochemistry) was observed 6 h after GLA exposure in the dentate gyrus, CA1, CA3, amygdala, piriform and entorhinal cortices, indicating the activation of the limbic system. In these structures, Fluoro-Jade C and Cresyl violet staining did not show neuronal suffering. However, astroglial activation was clearly observed at 24 h and 15 days after GLA treatment in the amygdala, piriform and entorhinal cortices by PCR quantitative, western blot and immunohistochemistry. Concomitantly, glutamine synthetase mRNA expression (PCR quantitative), protein expression (western blot) and enzymatic activity were upregulated. In conclusion, our study suggests that GLA-induced seizures: (a) involved limbic structures and (b) induced astrocytosis without neuronal degeneration as an evidence of a reactive astrocyte beneficial effect for neuronal protection.


Asunto(s)
Aminobutiratos/toxicidad , Encéfalo/efectos de los fármacos , Herbicidas/toxicidad , Organofosfatos/toxicidad , Convulsiones/inducido químicamente , Animales , Anticonvulsivantes/administración & dosificación , Astrocitos/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiopatología , Diazepam/administración & dosificación , Electroencefalografía , Glutamato-Amoníaco Ligasa/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Convulsiones/metabolismo , Convulsiones/fisiopatología
17.
Therapie ; 70(1): 1-19, 2015.
Artículo en Inglés, Francés | MEDLINE | ID: mdl-25679189

RESUMEN

Personalized medicine is based on: 1) improved clinical or non-clinical methods (including biomarkers) for a more discriminating and precise diagnosis of diseases; 2) targeted therapies of the choice or the best drug for each patient among those available; 3) dose adjustment methods to optimize the benefit-risk ratio of the drugs chosen; 4) biomarkers of efficacy, toxicity, treatment discontinuation, relapse, etc. Unfortunately, it is still too often a theoretical concept because of the lack of convenient diagnostic methods or treatments, particularly of drugs corresponding to each subtype of pathology, hence to each patient. Stratified medicine is a component of personalized medicine employing biomarkers and companion diagnostics to target the patients likely to present the best benefit-risk balance for a given active compound. The concept of targeted therapy, mostly used in cancer treatment, relies on the existence of a defined molecular target, involved or not in the pathological process, and/or on the existence of a biomarker able to identify the target population, which should logically be small as compared to the population presenting the disease considered. Targeted therapies and biomarkers represent important stakes for the pharmaceutical industry, in terms of market access, of return on investment and of image among the prescribers. At the same time, they probably represent only the first generation of products resulting from the combination of clinical, pathophysiological and molecular research, i.e. of translational research.


Asunto(s)
Medicina de Precisión , Investigación Biomédica Traslacional , Biomarcadores , Ensayos Clínicos como Asunto , Esquema de Medicación , Diseño de Fármacos , Monitoreo de Drogas , Francia , Humanos , Mercadotecnía , Técnicas de Diagnóstico Molecular , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Guías de Práctica Clínica como Asunto/normas , Medicina de Precisión/tendencias , Garantía de la Calidad de Atención de Salud , Investigación Biomédica Traslacional/tendencias
19.
Front Behav Neurosci ; 8: 390, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25477793

RESUMEN

Glufosinate ammonium (GLA) is one of the most widely used herbicides in agriculture. As is the case for most pesticides, potential adverse effects of GLA have not been studied from the perspective of developmental neurotoxicity. Early pesticides exposure may weaken the basic structure of the developing brain and cause permanent changes leading to a wide range of lifelong effects on health and/or behavior. Here, we addressed the developmental impact of GLA by exposing female mice to low dose GLA during both pre- and postnatal periods and analyzed potential developmental and behavioral changes of the offspring during infancy and adulthood. A neurobehavioral test battery revealed significant effects of GLA maternal exposure on early reflex development, pup communication, affiliative behaviors, and preference for social olfactory cues, but emotional reactivity and emotional memory remained unaltered. These behavioral alterations showed a striking resemblance to changes seen in animal models of Autistic Spectrum Disorders. At the brain level, GLA maternal exposure caused some increase in relative brain weight of the offspring. In addition, reduced expression of Pten and Peg3 - two genes implicated in autism-like deficits - was observed in the brain of GLA-exposed pups at postnatal day 15. Our work thus provides new data on the link between pre- and postnatal exposure to the herbicide GLA and the onset of autism-like symptoms later in life. It also raises fundamental concerns about the ability of current safety testing to assess risks of pesticide exposure during critical developmental periods.

20.
Orphanet J Rare Dis ; 9: 124, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25079250

RESUMEN

BACKGROUND: Fragile X Syndrome (FXS) is the most common form of inherited intellectual disability and is also associated with autism spectrum disorders. Previous studies implicated BKCa channels in the neuropathogenesis of FXS, but the main question was whether pharmacological BKCa stimulation would be able to rescue FXS neurobehavioral phenotypes. METHODS AND RESULTS: We used a selective BKCa channel opener molecule (BMS-204352) to address this issue in Fmr1 KO mice, modeling the FXS pathophysiology. In vitro, acute BMS-204352 treatment (10 µM) restored the abnormal dendritic spine phenotype. In vivo, a single injection of BMS-204352 (2 mg/kg) rescued the hippocampal glutamate homeostasis and the behavioral phenotype. Indeed, disturbances in social recognition and interaction, non-social anxiety, and spatial memory were corrected by BMS-204352 in Fmr1 KO mice. CONCLUSION: These results demonstrate that the BKCa channel is a new therapeutic target for FXS. We show that BMS-204352 rescues a broad spectrum of behavioral impairments (social, emotional and cognitive) in an animal model of FXS. This pharmacological molecule might open new ways for FXS therapy.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/prevención & control , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/fisiología , Animales , Síndrome del Cromosoma X Frágil/genética , Humanos , Ratones , Ratones Noqueados , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...