Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 31(20): 32761-32771, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37859071

RESUMEN

The use of ultrasonic elastic waves is a well established technique for non-destructive testing of materials and structures, in particular to exploit the interaction of waves with structural features to detect and characterize defects. Optical methods offer the advantage of visualising the distribution of elastic waves in a non-contact manner without disturbing the elastic wave. In this work we propose a laser feedback interferometry (LFI) based system as a cost effective, non-contact, alternative to a well established laser Doppler vibrometer technique. We demonstrate the visualization of the elastic waves, using an example of an elastic wave propagating through a prismatic acrylic rod. We show that the ultra-compact and simple implementation of LFI enables accurate visualization of the elastic waves in solids, and opens the pathway to a range of new opportunities in ultrasonic non-destructive testing and evaluation.

2.
Sensors (Basel) ; 23(7)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37050780

RESUMEN

In this paper, we demonstrate that a compact and inexpensive interferometric sensor based on the self-mixing effect in the laser cavity can be used for the characterization of shock waves. The sensor measures the changes in the refractive index induced by the shock wave. It is based on the self-mixing interferometry scheme. We describe the architecture of the dynamic sensor and the design of the experimental setup used for the characterization that involves a shock tube. Thus, we detail the experimental measurements for shock wave pressure amplitude of 5 bar and address their interpretation with regard to the most admitted models for acousto-optics.

3.
Sensors (Basel) ; 23(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36772215

RESUMEN

As soon as a laser is fired, some of the emitted light is scattered backward and coupled with the cavity modes, causing instability [...].

4.
Opt Lett ; 46(8): 1991-1994, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33857124

RESUMEN

We report here the first-ever, to the best of our knowledge, observation of an inconsistency in the fringe disappearance that occurs in self-mixing interferometers. The disappearance of fringes has been observed in vibration and absolute distance sensing schemes under moderate/strong feedback regimes, and it has a major impact on the design of self-mixing sensors. The number of missing fringes that mostly depends on the feedback strength is also linked to the establishment of the initial stable solution, and, as a consequence, the first modulation period will result in more fringes than expected in the case of an already permanent modulation. We demonstrate that this phenomenon is entirely predicted by the well-admitted dynamic rate equation model of the laser under optical feedback followed by the perfect agreement with experimental results.

5.
Sensors (Basel) ; 21(4)2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33670276

RESUMEN

At the micrometric scale, vessels or skin capillaries network architecture can provide useful information for human health management. In this paper, from simulation to in vitro, we investigate some limits and interests of optical feedback interferometry (OFI) for blood flow imaging of skin vascularization. In order to analyze the tissue scattering effect on OFI performances, a series of skin-tissue simulating optical phantoms have been designed, fabricated and characterized. The horizontal (2D) and vertical (depth penetration) sensing resolution of the OFI sensor have been estimated. The experimental results that we present on this study are showing a very good accordance with theoretical models. In the case of a skin phantom of 0.5 mm depth with a scattering coefficient from 0 to 10.8 mm-1, the presented OFI system is able to distinguish a pair of micro fluidic channels (100 µm × 100 µm) spaced by 10 µm. Eventually, an in vivo test on human skin is presented and, for the first time using an OFI sensor, a 2D blood flow image of a vein located just beneath the skin is computed.


Asunto(s)
Interferometría , Dispositivos Ópticos , Piel/irrigación sanguínea , Simulación por Computador , Retroalimentación , Humanos , Fantasmas de Imagen
6.
Appl Opt ; 60(1): 119-124, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33362079

RESUMEN

It is established in the optical feedback interferometry (OFI) theory that the shape of the interferometric fringe has an impact on the detector's response to very small displacement measurements. In this paper, we validate-for the first time, to the best of our knowledge, based on experimental results-this statement by comparing experiments to an established model implementation. Through these experiments, we show that the amplitude of the signals induced by sub-λ/2 optical path variations is linearly dependent on the slope of the underlying fringe. Thus, careful control of the phase allows us to maximize the detection amplitude of very small displacements by positioning the phase where the fringe slope is the steepest. These results are directly applicable to established OFI applications that measure sub-λ/2 optical path variations, such as OFI vibrometers or acoustic imaging though the acousto-optic effect.

7.
Opt Express ; 24(21): 23849-23862, 2016 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-27828220

RESUMEN

Optical feedback interferometry (OFI) performance for microscale-flow sensing is studied theoretically and experimentally. A new numerical modeling approach for OFI flow meter spectrum reproduction is presented in this work to study the optical effect on the signal due to the micro-scale channel geometry. Two well-defined frequency peaks are found in the OFI spectrum, this phenomenon can be attributed to the reflection of the forward scattered light on the channel rear interface. The flow rate measurement shows good accuracy over a range of fluid velocities from 16.8 mm/s to 168 mm/s, thus providing a promising tool to study and to optimize the OFI microfluidic sensor system.

8.
Sensors (Basel) ; 16(8)2016 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-27527178

RESUMEN

Optical feedback interferometry (OFI) is a compact sensing technique with recent implementation for flow measurements in microchannels. We propose implementing OFI for the analysis at the microscale of multiphase flows starting with the case of parallel flows of two immiscible fluids. The velocity profiles in each phase were measured and the interface location estimated for several operating conditions. To the authors knowledge, this sensing technique is applied here for the first time to multiphase flows. Theoretical profiles issued from a model based on the Couette viscous flow approximation reproduce fairly well the experimental results. The sensing system and the analysis presented here provide a new tool for studying more complex interactions between immiscible fluids (such as liquid droplets flowing in a microchannel).

9.
Sensors (Basel) ; 16(5)2016 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-27187406

RESUMEN

Optical feedback interferometry (OFI) sensors are experiencing a consistent increase in their applications to biosensing due to their contactless nature, low cost and compactness, features that fit very well with current biophotonics research and market trends. The present paper is a review of the work in progress at UPC-CD6 and LAAS-CNRS related to the application of OFI to different aspects of biosensing, both in vivo and ex vivo. This work is intended to present the variety of opportunities and potential applications related to OFI that are available in the field. The activities presented are divided into two main sensing strategies: The measurement of optical path changes and the monitoring of flows, which correspond to sensing strategies linked to the reconstruction of changes of amplitude from the interferometric signal, and to classical Doppler frequency measurements, respectively. For optical path change measurements, measurements of transient pulses, usual in biosensing, together with the measurement of large displacements applied to designing palliative care instrumentation for Parkinson disease are discussed. Regarding the Doppler-based approach, progress in flow-related signal processing and applications in real-time monitoring of non-steady flows, human blood flow monitoring and OFI pressure myograph sensing will be presented. In all cases, experimental setups are discussed and results presented, showing the versatility of the technique. The described applications show the wide capabilities in biosensing of the OFI sensor, showing it as an enabler of low-cost, all-optical, high accuracy biomedical applications.


Asunto(s)
Técnicas Biosensibles , Dispositivos Ópticos , Retroalimentación Sensorial , Humanos , Interferometría , Procesamiento de Señales Asistido por Computador
10.
Appl Opt ; 54(2): 312-8, 2015 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-25967631

RESUMEN

We present a simple analytical model that describes the injection current and temperature dependence of optical feedback interferometry signal strength for a single-mode laser diode. The model is derived from the Lang and Kobayashi rate equations, and is developed both for signals acquired from the monitoring photodiode (proportional to the variations in optical power) and for those obtained by amplification of the corresponding variations in laser voltage. The model shows that both the photodiode and the voltage signal strengths are dependent on the laser slope efficiency, which itself is a function of the injection current and the temperature. Moreover, the model predicts that the photodiode and voltage signal strengths depend differently on injection current and temperature. This important model prediction was proven experimentally for a near-infrared distributed feedback laser by measuring both types of signals over a wide range of injection currents and temperatures. Therefore, this simple model provides important insight into the radically different biasing strategies required to achieve optimal sensor sensitivity for both interferometric signal acquisition schemes.

11.
Appl Opt ; 53(17): 3723-36, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24921138

RESUMEN

Self-mixing laser sensors show promise for a wide range of sensing applications, including displacement, velocimetry, and fluid flow measurements. Several techniques have been developed to simulate self-mixing signals; however, a complete and succinct process for synthesizing self-mixing signals has so far been absent in the open literature. This article provides a systematic numerical approach for the analysis of self-mixing sensors using the steady-state solution to the Lang and Kobayashi model. Examples are given to show how this method can be used to synthesize self-mixing signals for arbitrary feedback levels and for displacement, distance, and velocity measurement. We examine these applications with a deterministic stimulus and discuss the velocity measurement of a rough surface, which necessitates the inclusion of a random stimulus.

12.
Opt Lett ; 39(2): 394-7, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24562155

RESUMEN

We compare the performance of a self-mixing (SM) sensing system based on an uncooled monolithic array of 24×1 vertical-cavity surface-emitting lasers (VCSELs) in two modes of operation: single active channel and the concurrent multichannel operation. We find that the signal-to-noise ratio of individual SM sensors in a VCSEL array is markedly improved by multichannel operation, as a consequence of the increased operational temperature of the sensors. The performance improvement can be further increased by manufacturing VCSEL arrays with smaller pitch. This has the potential to produce an imaging system with high spatial and temporal resolutions that can be operated without temperature stabilization.

13.
Opt Express ; 22(24): 30346-56, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25606963

RESUMEN

This study introduces optical feedback interferometry as a simple and effective technique for the two-dimensional visualisation of acoustic fields. We present imaging results for several pressure distributions including those for progressive waves, standing waves, as well as the diffraction and interference patterns of the acoustic waves. The proposed solution has the distinct advantage of extreme optical simplicity and robustness thus opening the way to a low cost acoustic field imaging system based on mass produced laser diodes.


Asunto(s)
Acústica , Retroalimentación , Imagenología Tridimensional , Interferometría , Fenómenos Ópticos , Procesamiento de Señales Asistido por Computador , Ultrasonido
14.
Opt Lett ; 37(18): 3771-3, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23041854

RESUMEN

In this Letter, we experimentally show that transient phenomenons in self-mixing signals from a moving target contain information about the target reflectivity and distance. These transient phenomenons are well explained with a dynamical model of the laser diode, which is used to trace an abacus giving the target reflectivity and distance from a measured high-bandwidth, self-mixing signal.

15.
Opt Lett ; 36(18): 3690-2, 2011 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-21931434

RESUMEN

We demonstrate a method for maintaining the maximum signal-to-noise ratio (SNR) of the signal obtained from the self-mixing sensor based on a vertical-cavity surface-emitting laser (VCSEL). It was found that the locus of the maximum SNR in the current-temperature space can be well approximated by a simple analytical model related to the temperature behavior of the VCSEL threshold current. The optimum sensor performance is achieved by tuning the laser current according to the proposed model, thus enabling the sensor to operate without temperature stabilization in a wide temperature range between -20 °C and +80 °C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...