Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 10: 1313, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31281294

RESUMEN

The bio-economy relies on microbial strains optimized for efficient large scale production of chemicals and fuels from inexpensive and renewable feedstocks under industrial conditions. The reduced one carbon compound methanol, whose production does not involve carbohydrates needed for the feed and food sector, can be used as sole carbon and energy source by methylotrophic bacteria like Methylobacterium extorquens AM1. This strain has already been engineered to produce various commodity and high value chemicals from methanol. The toxic effect of methanol limits its concentration as feedstock to 1% v/v. We obtained M. extorquens chassis strains tolerant to high methanol via adaptive directed evolution using the GM3 technology of automated continuous culture. Turbidostat and conditional medium swap regimes were employed for the parallel evolution of the recently characterized strain TK 0001 and the reference strain AM1 and enabled the isolation of derivatives of both strains capable of stable growth with 10% methanol. The isolates produced more biomass at 1% methanol than the ancestor strains. Genome sequencing identified the gene metY coding for an O-acetyl-L-homoserine sulfhydrylase as common target of mutation. We showed that the wildtype enzyme uses methanol as substrate at elevated concentrations. This side reaction produces methoxine, a toxic homolog of methionine incorporated in polypeptides during translation. All mutated metY alleles isolated from the evolved populations coded for inactive enzymes, designating O-acetyl-L-homoserine sulfhydrylase as a major vector of methanol toxicity. A whole cell transcriptomic analysis revealed that genes coding for chaperones and proteases were upregulated in the evolved cells as compared with the wildtype, suggesting that the cells had to cope with aberrant proteins formed during the adaptation to increasing methanol exposure. In addition, the expression of ribosomal proteins and enzymes related to energy production from methanol like formate dehydrogenases and ATP synthases was boosted in the evolved cells upon a short-term methanol stress. D-lactate production from methanol by adapted cells overexpressing the native D-lactate dehydrogenase was quantified. A significant higher lactate yield was obtained compared with control cells, indicating an enhanced capacity of the cells resistant to high methanol to assimilate this one carbon feedstock more efficiently.

2.
BMC Plant Biol ; 14: 202, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-25928320

RESUMEN

BACKGROUND: Salix caprea is a cold-tolerant pioneer species that is ecologically important in Europe and western and central Asia. However, little data is available on its population genetic structure and molecular ecology. We describe the levels of geographic population genetic structure in natural Irish populations of S. caprea and determine the extent of gene flow and sexual reproduction using both chloroplast and nuclear simple sequence repeats (SSRs). RESULTS: A total of 183 individuals from 21 semi-natural woodlands were collected and genotyped. Gene diversity across populations was high for the chloroplast SSRs (H T = 0.21-0.58) and 79 different haplotypes were discovered, among them 48% were unique to a single individual. Genetic differentiation of populations was found to be between moderate and high (mean G ST = 0.38). For the nuclear SSRs, G ST was low at 0.07 and observed heterozygosity across populations was high (H O = 0.32-0.51); only 9.8% of the genotypes discovered were present in two or more individuals. For both types of markers, AMOVA showed that most of the variation was within populations. Minor geographic pattern was confirmed by a Bayesian clustering analysis. Gene flow via pollen was found to be approximately 7 times more important than via seeds. CONCLUSIONS: The data are consistent with outbreeding and indicate that there are no significant barriers for gene flow within Ireland over large geographic distances. Both pollen-mediated and seed-mediated gene flow were found to be high, with some of the populations being more than 200 km apart from each other. These findings could simply be due to human intervention through seed trade or accidental transportation of both seeds and pollen. These results are of value to breeders wishing to exploit natural genetic variation and foresters having to choose planting material.


Asunto(s)
ADN de Cloroplastos/química , Flujo Génico , Variación Genética , Salix/genética , Teorema de Bayes , Genotipo , Haplotipos , Repeticiones de Microsatélite , Filogeografía
3.
Biotechnol Biofuels ; 6(1): 114, 2013 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-23924375

RESUMEN

BACKGROUND: Little is known about the levels of variation in lignin or other wood related genes in Salix, a genus that is being increasingly used for biomass and biofuel production. The lignin biosynthesis pathway is well characterized in a number of species, including the model tree Populus. We aimed to transfer the genomic resources already available in Populus to its sister genus Salix to assess levels of variation within genes involved in wood formation. RESULTS: Amplification trials for 27 gene regions were undertaken in 40 Salix taxa. Twelve of these regions were sequenced. Alignment searches of the resulting sequences against reference databases, combined with phylogenetic analyses, showed the close similarity of these Salix sequences to Populus, confirming homology of the primer regions and indicating a high level of conservation within the wood formation genes. However, all sequences were found to vary considerably among Salix species, mainly as SNPs with a smaller number of insertions-deletions. Between 25 and 176 SNPs per kbp per gene region (in predicted exons) were discovered within Salix. CONCLUSIONS: The variation found is sizeable but not unexpected as it is based on interspecific and not intraspecific comparison; it is comparable to interspecific variation in Populus. The characterisation of genetic variation is a key process in pre-breeding and for the conservation and exploitation of genetic resources in Salix. This study characterises the variation in several lignocellulose gene markers for such purposes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...