Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros










Intervalo de año de publicación
1.
Microbiol Res ; 285: 127763, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38805979

RESUMEN

Soil desertification poses a critical ecological challenge in arid and semiarid climates worldwide, leading to decreased soil productivity due to the disruption of essential microbial community processes. Fungi, as one of the most important soil microbial communities, play a crucial role in enhancing nutrient and water uptake by plants through mycorrhizal associations. However, the impact of overgrazing-induced desertification on fungal community structure, particularly in the Caatinga biome of semiarid regions, remains unclear. In this study, we assessed the changes in both the total fungal community and the arbuscular mycorrhizal fungal community (AMF) across 1. Natural vegetation (native), 2. Grazing exclusion (20 years) (restored), and 3. affected by overgrazing-induced degradation (degraded) scenarios. Our assessment, conducted during both the dry and rainy seasons in Irauçuba, Ceará, utilized Internal Transcribed Spacer (ITS) gene sequencing via Illumina® platform. Our findings highlighted the significant roles of the AMF families Glomeraceae (∼71% of the total sequences) and Acaulosporaceae (∼14% of the total sequences) as potential key taxa in mitigating climate change within dryland areas. Moreover, we identified the orders Pleosporales (∼35% of the total sequences) and Capnodiales (∼21% of the total sequences) as the most abundant soil fungal communities in the Caatinga biome. The structure of the total fungal community differed when comparing native and restored areas to degraded areas. Total fungal communities from native and restored areas clustered together, suggesting that grazing exclusion has the potential to improve soil properties and recover fungal community structure amid global climate change challenges.


Asunto(s)
Hongos , Micobioma , Micorrizas , Microbiología del Suelo , Suelo , Brasil , Micorrizas/clasificación , Micorrizas/genética , Micorrizas/fisiología , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Suelo/química , Cambio Climático , Clima Desértico , Biodiversidad , ADN de Hongos/genética , Estaciones del Año , Ecosistema
2.
PLoS One ; 19(4): e0299534, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38574297

RESUMEN

Alzheimer's disease (AD) is the most common neuronal disorder that leads to the development of dementia. Until nowadays, some therapies may alleviate the symptoms, but there is no pharmacological treatment. Microdosing lithium has been used to modify the pathological characteristics of the disease, with effects in both experimental and clinical conditions. The present work aimed to analyze the effects of this treatment on spatial memory, anxiety, and molecular mechanisms related to long-term memory formation during the aging process of a mouse model of accelerated aging (SAMP-8). Female SAMP-8 showed learning and memory impairments together with disruption of memory mechanisms, neuronal loss, and increased density of senile plaques compared to their natural control strain, the senescence-accelerated mouse resistant (SAMR-1). Chronic treatment with lithium promoted memory maintenance, reduction in anxiety, and maintenance of proteins related to memory formation and neuronal density. The density of senile plaques was also reduced. An increase in the density of gamma-aminobutyric acid A (GABAA) and α7 nicotinic cholinergic receptors was also observed and related to neuroprotection and anxiety reduction. In addition, this microdose of lithium inhibited the activation of glycogen synthase kinase-3beta (GSK-3ß), the classical mechanism of lithium cell effects, which could contribute to the preservation of the memory mechanism and reduction in senile plaque formation. This work shows that lithium effects in neuroprotection along the aging process are not related to a unique cellular mechanism but produce multiple effects that slowly protect the brain along the aging process.


Asunto(s)
Enfermedad de Alzheimer , Litio , Compuestos de Fenilmercurio , Ratones , Femenino , Animales , Litio/farmacología , Litio/uso terapéutico , Placa Amiloide/patología , Glucógeno Sintasa Quinasa 3 beta , Enfermedad de Alzheimer/patología , Envejecimiento/metabolismo , Modelos Animales de Enfermedad
3.
Chembiochem ; 25(9): e202400211, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38530090

RESUMEN

This symposium is the 5th PSL (Paris Sciences & Lettres) Chemical Biology meeting (2015, 2016, 2019, 2023, 2024) held at Institut Curie. This initiative originally started at Institut de Chimie des Substances Naturelles (ICSN) in Gif-sur-Yvette, with a strong focus on chemistry. It was then continued at the Institut Curie (2015) covering a larger scope, before becoming the official PSL Chemical Biology meeting. This latest edition hosted around 150 participants and was focused on the burgeoning field of ferroptosis, its mechanism and implications in health and disease. While not initially planned, it was felt that the next large Ferroptosis venue (CSHA, China) would not happen before late 2024. A discussion involving Conrad, Birsoy, Ubellacker, Brabletz and Rodriguez next to lake Como in Italy sponsored by the DKFZ, prompted us to fill in this gap and to organize a Ferroptosis meeting in Paris beforehand.


Asunto(s)
Ferroptosis , Ferroptosis/efectos de los fármacos , Humanos , Animales
4.
Polymers (Basel) ; 16(5)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38475362

RESUMEN

The goal of this research was to create an antibacterial biopolymeric coating integrating lytic bacteriophages against Salmonella enterica for use in ripened cheese. Salmonella enterica is the main pathogen that contaminates food products and the food industry. The food sector still uses costly and non-selective decontamination and disease control methods. Therefore, it is necessary to look for novel pathogen biocontrol technologies. Bacteriophage-based biocontrol seems like a viable option in this situation. The results obtained show promise for food applications since the edible packaging developed (EdiPhage) was successful in maintaining lytic phage viability while preventing the contamination of foodstuff with the aforementioned bacterial pathogen.

5.
Sci Rep ; 14(1): 6845, 2024 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514851

RESUMEN

Land degradation by deforestation adversely impacts soil properties, and long-term restoration practices have been reported to potentially reverse these effects, particularly on soil microorganisms. However, there is limited knowledge regarding the short-term effects of restoration on the soil bacterial community in semiarid areas. This study evaluates the bacterial community in soils experiencing degradation (due to slash-and-burn deforestation) and restoration (utilizing stone cordons and revegetation), in comparison to a native soil in the Brazilian semiarid region. Three areas were selected: (a) under degradation; (b) undergoing short-term restoration; and (c) a native area, and the bacterial community was assessed using 16S rRNA sequencing on soil samples collected during both dry and rainy seasons. The dry and rainy seasons exhibited distinct bacterial patterns, and native sites differed from degraded and restoration sites. Chloroflexi and Proteobacteria phyla exhibited higher prevalence in degraded and restoration sites, respectively, while Acidobacteria and Actinobacteria were more abundant in sites undergoing restoration compared to degraded sites. Microbial connections varied across sites and seasons, with an increase in nodes observed in the native site during the dry season, more edges and positive connections in the restoration site, and a higher occurrence of negative connections in the degradation site during the rainy season. Niche occupancy analysis revealed that degradation favored specialists over generalists, whereas restoration exhibited a higher prevalence of generalists compared to native sites. Specifically, degraded sites showed a higher abundance of specialists in contrast to restoration sites. This study reveals that land degradation impacts the soil bacterial community, leading to differences between native and degraded sites. Restoring the soil over a short period alters the status of the bacterial community in degraded soil, fostering an increase in generalist microbes that contribute to enhanced soil stability.


Asunto(s)
Bacterias , Suelo , ARN Ribosómico 16S/genética , Brasil , Bacterias/genética , Acidobacteria/genética , Microbiología del Suelo
6.
Sci Rep ; 14(1): 3919, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365962

RESUMEN

Soil fertility is key point to pastures systems and drives the microbial communities and their functionality. Therefore, an understanding of the interaction between soil fertility and microbial communities can increase our ability to manage pasturelands and maintain their soil functioning and productivity. This study probed the influence of soil fertility on microbial communities in tropical pastures in Brazil. Soil samples, gathered from the top 20 cm of twelve distinct areas with diverse fertility levels, were analyzed via 16S rRNA sequencing. The soils were subsequently classified into two categories, namely high fertility (HF) and low fertility (LF), using the K-Means clustering. The random forest analysis revealed that high fertility (HF) soils had more bacterial diversity, predominantly Proteobacteria, Nitrospira, Chloroflexi, and Bacteroidetes, while Acidobacteria increased in low fertility (LF) soils. High fertility (HF) soils exhibited more complex network interactions and an enrichment of nitrogen-cycling bacterial groups. Additionally, functional annotation based on 16S rRNA varied between clusters. Microbial groups in HF soil demonstrated enhanced functions such as nitrate reduction, aerobic ammonia oxidation, and aromatic compound degradation. In contrast, in the LF soil, the predominant processes were ureolysis, cellulolysis, methanol oxidation, and methanotrophy. Our findings expand our knowledge about how soil fertility drives bacterial communities in pastures.


Asunto(s)
Microbiota , Suelo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Brasil , Bacterias , Microbiota/genética , Microbiología del Suelo
7.
J Environ Manage ; 351: 119746, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38071918

RESUMEN

Land desertification poses a significant challenge in the Brazilian semiarid region, encompassing a substantial portion of the country. Within this region, the detrimental effects of human activities, particularly unsuitable anthropic actions, have resulted in diminished vegetation cover and an accelerated rate of soil erosion. Notably, practices such as overgrazing and the conversion of native forests into pasturelands have played a pivotal role in exacerbating the process of land desertification. Ultimately, land desertification results in significant losses of soil organic matter and microbial diversity. To address this pressing issue and contribute to the existing literature, various land restoration practices, such as grazing exclusion, cover crops, and terracing, have been implemented in the Brazilian semiarid. These practices have shown promising results in terms of enhancing soil fertility and restoring microbial properties. Nonetheless, their effectiveness in improving soil microbial properties in the Brazilian semiarid region remains a subject of ongoing study. Recent advances in molecular techniques have improved our understanding of microbial communities in lands undergoing desertification and restoration. In this review, we focus on assessing the effectiveness of these restoration practices in revitalizing soil microbial properties, with a particular emphasis on the soil microbiome and its functions. Through a critical assessment of the impact of these practices on soil microbial properties, our research aims to provide valuable insights that can help mitigate the adverse effects of desertification and promote sustainable development in this ecologically sensitive region.


Asunto(s)
Conservación de los Recursos Naturales , Suelo , Humanos , Microbiología del Suelo , Brasil , Bosques , China
8.
Biochim Biophys Acta Proteins Proteom ; 1872(1): 140970, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37871810

RESUMEN

J-domain proteins (JDPs) form a very large molecular chaperone family involved in proteostasis processes, such as protein folding, trafficking through membranes and degradation/disaggregation. JDPs are Hsp70 co-chaperones capable of stimulating ATPase activity as well as selecting and presenting client proteins to Hsp70. In mitochondria, human DjC20/HscB (a type III JDP that possesses only the conserved J-domain in some region of the protein) is involved in [FeS] protein biogenesis and assists human mitochondrial Hsp70 (HSPA9). Human DjC20 possesses a zinc-finger domain in its N-terminus, which closely contacts the J-domain and appears to be essential for its function. Here, we investigated the hDjC20 structure in solution as well as the importance of Zn+2 for its stability. The recombinant hDjC20 was pure, folded and capable of stimulating HSPA9 ATPase activity. It behaved as a slightly elongated monomer, as attested by small-angle X-ray scattering and SEC-MALS. The presence of Zn2+ in the hDjC20 samples was verified, a stoichiometry of 1:1 was observed, and its removal by high concentrations of EDTA and DTPA was unfeasible. However, thermal and chemical denaturation in the presence of EDTA led to a reduction in protein stability, suggesting a synergistic action between the chelating agent and denaturators that facilitate protein unfolding depending on metal removal. These data suggest that the affinity of Zn+2 for the protein is very high, evidencing its importance for the hDjC20 structure.


Asunto(s)
Proteínas HSP70 de Choque Térmico , Proteínas de Choque Térmico , Humanos , Adenosina Trifosfatasas/metabolismo , Ácido Edético , Proteínas de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/química , Chaperonas Moleculares/química
9.
Braz J Microbiol ; 54(3): 2319-2331, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37578738

RESUMEN

Sulfentrazone (STZ) is an efficient tool for the pre- and post-emergence control of monocotyledonous and dicotyledonous weeds in fields of crops such as pineapple, coffee, sugarcane, citrus, eucalyptus, tobacco, and soybean. However, this herbicide persists in the soil, causing phytotoxicity in the subsequent crop. Therefore, it is important to use efficient strategies for the remediation of STZ-contaminated areas. The aim of this study was to evaluate the effects of Crotalaria juncea L. on the remediation of STZ-contaminated soil and on the microbial activity and bacterial community structure therein. The study was conducted in three stages: (i) cultivation of C. juncea in soil contaminated with 200, 400, and 800 g ha-1 STZ; (ii) determination of the soil microbial activity (basal respiration, microbial biomass carbon, and bacterial community structure); and (iii) cultivation of a bioindicator species and determination of the residual fraction of STZ. The soil microbial activity was impacted by the soil type and STZ dose. Soil previously cultivated with C. juncea (rhizospheric soil) displayed higher CO2 and lower qCO2 values than non-rhizospheric soil (no previous C. juncea cultivation). Increasing doses of STZ reduced the activity and lowered the diversity indices of the soil microorganisms. The bacterial community structure was segregated between the rhizospheric and non-rhizospheric soils. Regardless of soil type, the bioindicator of remediation (Pennisetum glaucum R.Br.) grew only at the STZ dose of 200 g ha-1, and the plant intoxication level was also lower in rhizospheric soil treated with this herbicide dose. All P. glaucum plants died in the soils treated with 400 and 800 g ha-1 STZ. Previous cultivation of C. juncea in soils contaminated with 200, 400, and 800 g ha-1 STZ reduced the residual fraction of the herbicide by 4.8%, 12.5%, and 17.4%, respectively, compared with that in the non-rhizospheric soils. In conclusion, previous cultivation with C. juncea promoted increases in the soil bacterial activity and diversity indices, mitigated the deleterious effects of STZ on the bioindicator crop, and reduced the residual fraction of the herbicide in the soil.


Asunto(s)
Crotalaria , Microbiología del Suelo , Sulfonamidas , Triazoles , Crotalaria/metabolismo , Biodegradación Ambiental , Sulfonamidas/metabolismo , Triazoles/metabolismo
11.
Braz J Microbiol ; 54(3): 1955-1967, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37410249

RESUMEN

Arbuscular mycorrhizal fungi form symbiotic associations with 80-90% of all known plants, allowing the fungi to acquire plant-synthesized carbon, and confer an increased capacity for nutrient uptake by plants, improving tolerance to abiotic and biotic stresses. We aimed at characterizing the mycorrhizal community in the rhizosphere of Neoglaziovia variegata (so-called `caroa`) and Tripogonella spicata (so-called resurrection plant), using high-throughput sequencing of the partial 18S rRNA gene. Both plants are currently undergoing a bioprospecting program to find microbes with the potential of helping plants tolerate water stress. Sampling was carried out in the Caatinga biome, a neotropical dry forest, located in northeastern Brazil. Illumina MiSeq sequencing of 37 rhizosphere samples (19 for N. variegata and 18 for T. spicata) revealed a distinct mycorrhizal community between the studied plants. According to alpha diversity analyses, T. spicata showed the highest richness and diversity based on the Observed ASVs and the Shannon index, respectively. On the other hand, N. variegata showed higher modularity of the mycorrhizal network compared to T. spicata. The four most abundant genera found (higher than 10%) were Glomus, Gigaspora, Acaulospora, and Scutellospora, with Glomus being the most abundant in both plants. Nonetheless, Gigaspora, Diversispora, and Ambispora were found only in the rhizosphere of N. variegata, whilst Scutellospora, Paraglomus, and Archaeospora were exclusive to the rhizosphere of T. spicata. Therefore, the community of arbuscular mycorrhizal fungi of the rhizosphere of each plant encompasses a unique composition, structure and modularity, which can differentially assist them in the hostile environment.


Asunto(s)
Glomeromycota , Micorrizas , Micorrizas/genética , Brasil , Rizosfera , Poaceae , Microbiología del Suelo , Hongos , Bosques , Plantas , Raíces de Plantas/microbiología
12.
Environ Res ; 233: 116489, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37385417

RESUMEN

Drylands are fragile environments that should be carefully managed to improve their quality and functions to achieve sustainable development. Their major problems involve low availability of nutrients and soil organic carbon content. Biochar effect on soil is a joint response of micro to nano sized biochar and soil characteristics. In this review, we attempt to carry out a critical analysis of biochar application to enhance dryland soil quality. Correlating the effects identified from its soil application, we explored the subjects that remains open in the literature. The relation of composition-structure-properties of biochar vary among pyrolysis parameters and biomass sources. Limitations in soil physical quality in drylands, such as low water-holding capacity, can be alleviated by applying biochar at a rate of 10 Mg ha-1 also resulting in beneficial effects on soil aggregation, improved soil porosity, and reduced bulk density. Biochar addition can contribute to the rehabilitation of saline soils, by releasing cations able to displaces sodium in the exchange complex. However, the recovery process of salt-affected soils might be accelerated by the association of biochar with another soil conditioners. This is a promising strategy especially considering the biochar alkalinity and variability in nutrients bioavailability to improve soil fertilization. Further, while higher biochar application rate (>20 Mg ha-1) might change soil C dynamics, a combination of biochar and nitrogen fertilizer can increase microbial biomass carbon in dryland systems. Other aspect of biochar soil application is the economic viability of scale-up production, which is mainly associate to pyrolysis process being biochar production the costliest stage. Nevertheless, the supplying of feedstock might also represent a great input on biochar final costs. Therefore, biochar-based technology is a big opportunity to improve fragile environments such as drylands, integrating sustainable technologies with regional development. Considering the specificity of application area, it might be a model of sustainable agricultural practices protecting the environment in a bioeconomic perspective.


Asunto(s)
Carbono , Suelo , Humanos , Carbón Orgánico , Ecosistema
13.
Microbiol Res ; 274: 127435, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37331053

RESUMEN

Soybean-maize are cultivated in different management systems, such as no-tillage and pastures, which presents potential to add organic residues, and it can potentially impacts the soil microbial community present in these systems. Thus, this study aimed to examine the effects of different soybean-maize management practices on the diversity and composition of soil microbial communities. Specifically, 16 S rRNA amplicon sequencing was used to investigate whether the use of pasture species in a fallowing system influences microbial communities in a soybean-maize rotation system, as compared to conventional tillage and no-tillage systems. The results indicate that the inclusion of the pasture species Urochloa brizantha in soybean-maize management systems leads to distinct responses within the soil microbial community. It was found that different soybean-maize management systems, particularly those with U. brizantha, affected the microbial community, likely due to the management applied to this pasture species. The system with 3 years of fallowing before soybean-maize showed the lowest microbial richness (∼2000 operational taxonomic units) and diversity index (∼6.0). Proteobacteria (∼30%), Acidobacteria (∼15%), and Verrucomicrobia (∼10%) were found to be the most abundant phyla in the soil under tropical native vegetation, while soils under cropland had an increased abundance of Firmicutes (∼30% to ∼50%) and Actinobacteria (∼30% to ∼35%). To summarize, this study identified the impacts of various soybean-maize management practices on the soil microbial community and emphasized the advantages of adding U. brizantha as a fallow species.


Asunto(s)
Microbiota , Suelo , Suelo/química , Zea mays/microbiología , Glycine max , Microbiología del Suelo
14.
Antibiotics (Basel) ; 12(6)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37370307

RESUMEN

This research work aimed at developing an edible biopolymeric microcapsular wrapping (EBMW) integrating lytic bacteriophage particles for Salmonella enterica, with potential application in poultry feed for biocontrol of that pathogen. This pathogen is known as one of the main microorganisms responsible for contamination in the food industry and in foodstuff. The current techniques for decontamination and pathogen control in the food industry can be very expensive, not very selective, and even outdated, such as the use of broad-spectrum antibiotics that end up selecting resistant bacteria. Hence, there is a need for new technologies for pathogen biocontrol. In this context, bacteriophage-based biocontrol appears as a potential alternative. As a cocktail, both phages were able to significantly reduce the bacterial load after 12 h of treatment, at either multiplicity of infection (MOI) 1 and 10, by 84.3% and 87.6%, respectively. Entrapment of the phage virions within the EBMW matrix did not exert any deleterious effect upon their lytic activity. The results obtained showed high promise for integration in poultry feed aiming at controlling Salmonella enterica, since the edible biopolymeric microcapsular wrapping integrating lytic bacteriophage particles developed was successful in maintaining lytic phage viability while fully stabilizing the phage particles.

15.
Chemosphere ; 328: 138581, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37019406

RESUMEN

Imazethapyr and flumioxazin are widely recommended herbicides for soybean fields due to their broad-spectrum effects. However, although both herbicides present low persistence, their potential impact on the community of plant growth-promoting bacteria (PGPB) is unclear. To address this gap, this study assessed the short-term effect of imazethapyr, flumioxazin, and their mixture on the PGPB community. Soil samples from soybean fields were treated with these herbicides and incubated for 60 days. We extracted soil DNA at 0, 15, 30, and 60 days and sequenced the 16S rRNA gene. In general, the herbicides presented temporary and short-term effects on PGPB. The relative abundance of Bradyrhizobium increased, while Sphingomonas decreased on the 30th day with the application of all herbicides. Both herbicides increased the potential function of nitrogen fixation at 15th days and decreased at 30th and 60th days of incubation. The proportions of generalists were similar (∼42%) comparing each herbicide and the control, while the proportion of specialists increased (varying from 24.9% to 27.6%) with the application of herbicides. Imazethapyr, flumioxazin and their mixture did not change the complexity and interactions of the PGPB network. In conclusion, this study showed that, in the short term, the application of imazethapyr, flumioxazin, and their mixture, at the recommended field rates, does not negatively affect the community of plant growth-promoting bacteria.


Asunto(s)
Herbicidas , Herbicidas/análisis , ARN Ribosómico 16S/genética , Suelo , Bacterias/genética , Glycine max
16.
Microbiol Res ; 271: 127352, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36907073

RESUMEN

Climate change has caused irregularities in water distribution, which affect the soil drying-wetting cycle and the development of economically important agricultural crops. Therefore, the use of plant growth-promoting bacteria (PGPB) emerges as an efficient strategy to mitigate negative impacts on crop yield. We hypothesized that the use of PGPB (in consortium or not) had potential to promote maize (Zea mays L.) growth under a soil moisture gradient in both non-sterile and sterile soils. Thirty PGPB strains were characterized for direct plant growth-promotion and drought tolerance induction mechanisms and were used in two independent experiments. Four soil water contents were used to simulate a severe drought (30% of field capacity [FC]), moderate drought (50% of FC), no drought (80% of FC) and, finally, a water gradient comprising the three mentioned soil water contents (80%, 50%, and 30% of FC). Two bacteria strains (BS28-7 Arthrobacter sp. and BS43 Streptomyces alboflavus), in addition to three consortia (BC2, BC4 and BCV) stood out in maize growth performance in experiment 1 and were used in experiment 2. Overall, under moderate drought, inoculation with BS43 surpassed the control treatment in root dry mass and nutrient uptake. Considering the water gradient treatment (80-50-30% of FC), the greatest total biomass was found in the uninoculated treatment when compared to BS28-7, BC2, and BCV. The greatest development of Z. mays L. was only observed under constant water stress conditions in the presence of PGPB. This is the first report that demonstrated the negative effect of individual inoculation of Arthrobacter sp. and the consortium of this strain with Streptomyces alboflavus on the growth of Z. mays L. based on a soil moisture gradient; however, future studies are needed for further validation.


Asunto(s)
Suelo , Streptomyces , Zea mays/microbiología , Raíces de Plantas/microbiología
17.
Heliyon ; 9(3): e13804, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36895350

RESUMEN

The rhizosphere microbes play a key role in plant nutrition and health. However, the interaction of beneficial microbes and Vigna unguiculata (lobia) production remains poorly understood. Thus, we aimed to isolate and characterize the soil microbes from the rhizosphere and develop novel microbial consortia for enhancing lobia production. Fifty bacterial strains were isolated from the rhizosphere soil samples of lobia. Finally, five effective strains (e.g., Pseudomonas sp. IESDJP-V1 and Pseudomonas sp. IESDJP-V2, Serratia marcescens IESDJP-V3, Bacillus cereus IESDJP-V4, Ochrobactrum sp. IESDJP-V5) were identified and molecularly characterized by 16 S rDNA gene amplification. All selected strains showed positive plant growth promoting (PGP) properties in broth culture. Based on morphological, biochemical, and plant growth promoting activities, five effective isolated strains and two collected strains (Azospirillum brasilense MTCC-4037 and Paenibacillus polymyxa BHUPSB17) were selected. The pot trials were conducted with seed inoculations of lobia (Vigna unguiculata) var. Kashi Kanchan with thirty treatments and three replications. The treatment combination T3 (Pseudomonas sp. IESDJP-V2), T14 (Pseudomonas sp. IESDJP-V2 + A. brasilense), T26 (Pseudomonas sp. IESDJP-V1+ B. cereus IESDJP-V4 + P. polymyxa) and T27 (IESDJP-V1+ IESDJP-V5+ A. brasilense) were recorded for enhancing plant growth attributes, yield, nutritional content like protein, total sugar, flavonoid and soil properties as compared to control and others. The effective treatments T3 (Pseudomonas sp.), T14 (Pseudomonas sp. IESDJP-V2 + A. brasilense), T26 (Pseudomonas sp. IESDJP-V1+ B. cereus IESDJP-V4 + P. polymyxa) and T27 (IESDJP-V1+ IESDJP-V5+ A. brasilense) recorded as potential PGPR consortium for lobia production. The treatment of single (Pseudomonas sp.), duel (IESDJP-V2 + A. brasilense) and triple combination (IESDJP-V1+ IESDJP-V4 + P. polymyxa) and (IESDJP-V1+ IESDJP-V5+ A. brasilense) can be further used for developing effective indigenous consortium for lobia production under sustainable farming practices. These PGPR bio-inoculant will be cost-effective, environment-friendly and socially acceptable.

18.
Microbiol Res ; 271: 127350, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36913786

RESUMEN

Arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) are able to provide key ecosystem services, protecting plants against biotic and abiotic stresses. Here, we hypothesized that a combination of AMF (Rhizophagus clarus) and PGPR (Bacillus sp.) could enhance 33P uptake in maize plants under soil water stress. A microcosm experiment using mesh exclusion and a radiolabeled phosphorus tracer (33P) was installed using three types of inoculation: i) only AMF, ii) only PGPR, and iii) a consortium of AMF and PGPR, alongside a control treatment without inoculation. For all treatments, a gradient of three water-holding capacities (WHC) was considered i) 30% (severe drought), ii) 50% (moderate drought), and iii) 80% (optimal condition, no water stress). In severe drought conditions, AMF root colonization of dual-inoculated plants was significantly lower compared to individual inoculation of the AMF, whilst 33P uptake by dual-inoculated plants or plants inoculated with bacteria was 2.4-fold greater than the uninoculated treatment. Under moderate drought conditions the use of AMF promoted the highest 33P uptake by plants, increasing it by 2.1-fold, when compared to the uninoculated treatment. Without drought stress, AMF showed the lowest 33P uptake and, overall, plant P acquisition was lower for all inoculation types when compared to the severe and moderate drought treatments. The total shoot P content was modulated by the water-holding capacity and inoculation type, with the lowest values observed under severe drought and the highest values under moderate drought. The highest soil electrical conductivity (EC) values were found under severe drought in AMF-inoculated plants and the lowest EC for no drought in single or dual-inoculated plants. Furthermore, water-holding capacity influenced the total soil bacterial and mycorrhizal abundance over time, with the highest abundances being found under severe and moderate drought. This study demonstrates that the positive influence of microbial inoculation on 33P uptake by plants varied with soil water gradient. Furthermore, under severe stress conditions, AMF invested more in the production of hyphae, vesicles and spore production, indicating a significant carbon drain from the host plant as evidenced by the lack of translation of increased 33P uptake into biomass. Therefore, under severe drought the use of bacteria or dual-inoculation seems to be more effective than individual AMF inoculation in terms of 33P uptake by plants, while under moderate drought, the use of AMF stood out.


Asunto(s)
Micorrizas , Zea mays/microbiología , Ecosistema , Plantas , Suelo , Bacterias
19.
Microb Ecol ; 85(4): 1423-1433, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35525854

RESUMEN

Plants modulate the soil microbiota and select a specific microbial community in the rhizosphere. However, plant domestication reduces genetic diversity, changes plant physiology, and could have an impact on the associated microbiome assembly. Here, we used 16S rRNA gene sequencing to assess the microbial community in the bulk soil and rhizosphere of wild, semi-domesticated, and domesticated genotypes of lima bean (Phaseolus lunatus), to investigate the effect of plant domestication on microbial community assembly. In general, rhizosphere communities were more diverse than bulk soil, but no differences were found among genotypes. Our results showed that the microbial community's structure was different from wild and semi-domesticated as compared to domesticated genotypes. The community similarity decreased 57.67% from wild to domesticated genotypes. In general, the most abundant phyla were Actinobacteria (21.9%), Proteobacteria (20.7%), Acidobacteria (14%), and Firmicutes (9.7%). Comparing the different genotypes, the analysis showed that Firmicutes (Bacillus) was abundant in the rhizosphere of the wild genotypes, while Acidobacteria dominated semi-domesticated plants, and Proteobacteria (including rhizobia) was enriched in domesticated P. lunatus rhizosphere. The domestication process also affected the microbial community network, in which the complexity of connections decreased from wild to domesticated genotypes in the rhizosphere. Together, our work showed that the domestication of P. lunatus shaped rhizosphere microbial communities from taxonomic to a functional level, changing the abundance of specific microbial groups and decreasing the complexity of interactions among them.


Asunto(s)
Microbiota , Phaseolus , Phaseolus/genética , Phaseolus/microbiología , Raíces de Plantas/microbiología , Rizosfera , Domesticación , ARN Ribosómico 16S/genética , Microbiota/genética , Proteobacteria/genética , Plantas , Acidobacteria/genética , Suelo/química , Microbiología del Suelo
20.
Microb Ecol ; 85(3): 1072-1076, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35633375

RESUMEN

Soils from Brazilian semiarid regions are highly vulnerable to desertification due to their geology, climate, human actions, and intensive land use that contribute to desertification. Therefore, areas under desertification have increased in the Brazilian semiarid region and it has negatively changed the soil bacterial and archaeal communities and their functionality. On the other hand, although restoration strategies are expensive and there are few soils restoration programs, some practices have been applied to restore these soils under desertification. For instance, conservationist practices and grazing exclusion have been strategically implemented, and they created a new altered soil condition for soil microbial communities, boosting soil microbial diversity. Here, we discuss the potential of these restoration strategies to recover the richness and diversity of soil bacterial and archaeal communities that were described through environmental DNA (eDNA) sequencing of soil samples. eDNA sequencing results show that areas where restoration strategies have been applied in regions under desertification in the Brazilian semiarid have increased species richness, diversity, and structure of the bacterial and archaeal community. In addition, network connectivity and functionality of the soil microorganisms have been improved over time. Altogether, we show that management strategies for soil restoration have positive effects on soil microbial communities and these effects can be monitored using the eDNA sequencing approach.


Asunto(s)
Archaea , ADN Ambiental , Humanos , Archaea/genética , Suelo/química , Conservación de los Recursos Naturales , Brasil , Microbiología del Suelo , Bacterias/genética , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...