Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci Alliance ; 6(7)2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37188479

RESUMEN

The NEK1 kinase controls ciliogenesis, mitosis, and DNA repair, and NEK1 mutations cause human diseases including axial spondylometaphyseal dysplasia and amyotrophic lateral sclerosis. C21ORF2 mutations cause a similar pattern of human diseases, suggesting close functional links with NEK1 Here, we report that endogenous NEK1 and C21ORF2 form a tight complex in human cells. A C21ORF2 interaction domain "CID" at the C-terminus of NEK1 is necessary for its association with C21ORF2 in cells, and pathogenic mutations in this region disrupt the complex. AlphaFold modelling predicts an extended binding interface between a leucine-rich repeat domain in C21ORF2 and the NEK1-CID, and our model may explain why pathogenic mutations perturb the complex. We show that NEK1 mutations that inhibit kinase activity or weaken its association with C21ORF2 severely compromise ciliogenesis, and that C21ORF2, like NEK1 is required for homologous recombination. These data enhance our understanding of how the NEK1 kinase is regulated, and they shed light on NEK1-C21ORF2-associated diseases.


Asunto(s)
Reparación del ADN , Osteocondrodisplasias , Humanos , Mutación/genética , Quinasa 1 Relacionada con NIMA/genética , Osteocondrodisplasias/genética , Fosforilación
2.
Cells Dev ; 174: 203839, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37062431

RESUMEN

Centrosomes are microtubule organizing centers involved in chromosome segregation, spindle orientation, cell motility and cilia formation. In recent years, they have also emerged as key modulators of asymmetric cell division. Centrosomes are composed of two centrioles that initiate duplication in S phase. The conservative nature of centriole duplication means that the two centrioles of a G1 cell are of different ages. They are also structurally different as only the older centriole carries appendages, an assembly of a subset of proteins primarily required for cilia formation. In a growing tissue, the non-motile, primary cilium acts as a mechano- and sensory organelle that influences cell behavior via modulation of signaling pathways. Here, we discuss the most recent findings about distal appendage composition and function, as well as cell cycle-specific regulation and their implications in various diseases.


Asunto(s)
Centriolos , Centrosoma , Centrosoma/metabolismo , Centriolos/genética , Centriolos/metabolismo , Ciclo Celular , Orgánulos , Centro Organizador de los Microtúbulos
3.
Mol Biol Cell ; 34(2): ar11, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36542480

RESUMEN

Faithful chromosome segregation in budding yeast requires correct positioning of the mitotic spindle along the mother to daughter cell polarity axis. When the anaphase spindle is not correctly positioned, a surveillance mechanism, named as the spindle position checkpoint (SPOC), prevents the progression out of mitosis until correct spindle positioning is achieved. How SPOC works on a molecular level is not well understood. Here we performed a genome-wide genetic screen to search for components required for SPOC. We identified the SWR1 chromatin-remodeling complex (SWR1-C) among several novel factors that are essential for SPOC integrity. Cells lacking SWR1-C were able to activate SPOC upon spindle misorientation but underwent mitotic slippage upon prolonged SPOC arrest. This mitotic slippage required the Cdc14-early anaphase release pathway and other factors including the SAGA (Spt-Ada-Gcn5 acetyltransferase) histone acetyltransferase complex, proteasome components and the mitotic cyclin-dependent kinase inhibitor Sic1. Together, our data establish a novel link between SWR1-C chromatin remodeling and robust checkpoint arrest in late anaphase.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ensamble y Desensamble de Cromatina , Mitosis , Puntos de Control de la Fase M del Ciclo Celular , Huso Acromático/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Adenosina Trifosfatasas/metabolismo
4.
Open Biol ; 12(11): 220203, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36321416

RESUMEN

The spindle position checkpoint (SPOC) is a mitotic surveillance mechanism in Saccharomyces cerevisiae that prevents cells from completing mitosis in response to spindle misalignment, thereby contributing to genomic integrity. The kinase Kin4, one of the most downstream SPOC components, is essential to stop the mitotic exit network (MEN), a signalling pathway that promotes the exit from mitosis and cell division. Previous work, however, suggested that a Kin4-independent pathway contributes to SPOC, yet the underlying mechanisms remain elusive. Here, we established the glycogen-synthase-kinase-3 (GSK-3) homologue Mck1, as a novel component that works independently of Kin4 to engage SPOC. Our data indicate that both Kin4 and Mck1 work in parallel to counteract MEN activation by the Cdc14 early anaphase release (FEAR) network. We show that Mck1's function in SPOC is mediated by the pre-replication complex protein and mitotic cyclin-dependent kinase (M-Cdk) inhibitor, Cdc6, which is degraded in a Mck1-dependent manner prior to mitosis. Moderate overproduction of Cdc6 phenocopies MCK1 deletion and causes SPOC deficiency via its N-terminal, M-Cdk inhibitory domain. Our data uncover an unprecedented role of GSK-3 kinases in coordinating spindle orientation with cell cycle progression.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Humanos , Proteínas de Saccharomyces cerevisiae/genética , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Huso Acromático/metabolismo , Saccharomycetales/metabolismo , Proteínas Serina-Treonina Quinasas , Fosforilación , Saccharomyces cerevisiae/genética , Mitosis , Proteínas de Ciclo Celular/metabolismo , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo
5.
J Cell Biol ; 221(12)2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36315013

RESUMEN

The centriole is the microtubule-based backbone that ensures integrity, function, and cell cycle-dependent duplication of centrosomes. Mostly unclear mechanisms control structural integrity of centrioles. Here, we show that the centrosome protein CEP350 functions as scaffold that coordinates distal-end properties of centrioles such as length, stability, and formation of distal and subdistal appendages. CEP350 fulfills these diverse functions by ensuring centriolar localization of WDR90, recruiting the proteins CEP78 and OFD1 to the distal end of centrioles and promoting the assembly of subdistal appendages that have a role in removing the daughter-specific protein Centrobin. The CEP350-FOP complex in association with CEP78 or OFD1 controls centriole microtubule length. Centrobin safeguards centriole distal end stability, especially in the compromised CEP350-/- cells, while the CEP350-FOP-WDR90 axis secures centriole integrity. This study identifies CEP350 as a guardian of the distal-end region of centrioles without having an impact on the proximal PCM part.


Asunto(s)
Proteínas de Ciclo Celular , Centriolos , Proteínas Asociadas a Microtúbulos , Proteínas Nucleares , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centriolos/metabolismo , Centrosoma/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo
6.
Cells ; 11(9)2022 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-35563825

RESUMEN

The mitotic exit network (MEN) is a conserved signalling pathway essential for the termination of mitosis in the budding yeast Saccharomyces cerevisiae. All MEN components are highly conserved in the methylotrophic budding yeast Ogataea polymorpha, except for Cdc15 kinase. Instead, we identified two essential kinases OpHcd1 and OpHcd2 (homologue candidate of ScCdc15) that are homologous to SpSid1 and SpCdc7, respectively, components of the septation initiation network (SIN) of the fission yeast Schizosaccharomyces pombe. Conditional mutants for OpHCD1 and OpHCD2 exhibited significant delay in late anaphase and defective cell separation, suggesting that both genes have roles in mitotic exit and cytokinesis. Unlike Cdc15 in S. cerevisiae, the association of OpHcd1 and OpHcd2 with the yeast centrosomes (named spindle pole bodies, SPBs) is restricted to the SPB in the mother cell body. SPB localisation of OpHcd2 is regulated by the status of OpTem1 GTPase, while OpHcd1 requires the polo-like kinase OpCdc5 as well as active Tem1 to ensure the coordination of mitotic exit (ME) signalling and cell cycle progression. Our study suggests that the divergence of molecular mechanisms to control the ME-signalling pathway as well as the loss of Sid1/Hcd1 kinase in the MEN occurred relatively recently during the evolution of budding yeast.


Asunto(s)
Proteínas de Unión al GTP Monoméricas , Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Schizosaccharomyces , Humanos , Mitosis , Proteínas de Unión al GTP Monoméricas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomycetales/genética , Saccharomycetales/metabolismo , Schizosaccharomyces/metabolismo , Cuerpos Polares del Huso/metabolismo
7.
EMBO Mol Med ; 14(4): e14990, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35253392

RESUMEN

The heterogeneous response of acute myeloid leukemia (AML) to current anti-leukemic therapies is only partially explained by mutational heterogeneity. We previously identified GPR56 as a surface marker associated with poor outcome across genetic groups, which characterizes two leukemia stem cell (LSC)-enriched compartments with different self-renewal capacities. How these compartments self-renew remained unclear. Here, we show that GPR56+ LSC compartments are promoted in a complex network involving epithelial-to-mesenchymal transition (EMT) regulators besides Rho, Wnt, and Hedgehog (Hh) signaling. Unexpectedly, Wnt pathway inhibition increased the more immature, slowly cycling GPR56+ CD34+ fraction and Hh/EMT gene expression, while Wnt activation caused opposite effects. Our data suggest that the crucial role of GPR56 lies in its ability to co-activate these opposing signals, thus ensuring the constant supply of both LSC subsets. We show that CDK7 inhibitors suppress both LSC-enriched subsets in vivo and synergize with the Bcl-2 inhibitor venetoclax. Our data establish reciprocal transition between LSC compartments as a novel concept underlying the poor outcome in GPR56high AML and propose combined CDK7 and Bcl-2 inhibition as LSC-directed therapy in this disease.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Quinasas Ciclina-Dependientes , Leucemia Mieloide Aguda , Inhibidores de Proteínas Quinasas , Sulfonamidas , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Proteína Quinasa CDC2/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Sinergismo Farmacológico , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/uso terapéutico , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/uso terapéutico , Sulfonamidas/farmacología , Quinasa Activadora de Quinasas Ciclina-Dependientes
8.
EMBO J ; 41(1): e108843, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34981518

RESUMEN

Primary cilia are antenna-like organelles required for signalling transduction. How cilia structure is mechanistically maintained at steady-state to promote signalling is largely unknown. Here, we define that mammalian primary cilia axonemes are formed by proximal segment (PS) and distal segment (DS) delineated by tubulin polyglutamylation-rich and -poor regions, respectively. The analysis of proximal/distal segmentation indicated that perturbations leading to cilia over-elongation influenced PS or DS length with a different impact on cilia behaviour. We identified septins as novel repressors of DS growth. We show that septins control the localisation of MKS3 and CEP290 required for a functional transition zone (TZ), and the cilia tip accumulation of the microtubule-capping kinesin KIF7, a cilia-growth inhibitor. Live-cell imaging and analysis of sonic-hedgehog (SHH) signalling activation established that DS over-extension increased cilia ectocytosis events and decreased SHH activation. Our data underlines the importance of understanding cilia segmentation for length control and cilia-dependent signalling.


Asunto(s)
Cilios/metabolismo , Septinas/metabolismo , Animales , Antígenos de Neoplasias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Proteínas del Citoesqueleto/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Cinesinas/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Microtúbulos/metabolismo , Epitelio Pigmentado de la Retina/citología , Transducción de Señal
9.
J Cell Biol ; 219(6)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32406907

RESUMEN

Here we describe a time-efficient strategy for endogenous C-terminal gene tagging in mammalian tissue culture cells. An online platform is used to design two long gene-specific oligonucleotides for PCR with generic template cassettes to create linear dsDNA donors, termed PCR cassettes. PCR cassettes encode the tag (e.g., GFP), a Cas12a CRISPR RNA for cleavage of the target locus, and short homology arms for directed integration via homologous recombination. The integrated tag is coupled to a generic terminator shielding the tagged gene from the co-inserted auxiliary sequences. Co-transfection of PCR cassettes with a Cas12a-encoding plasmid leads to robust endogenous expression of tagged genes, with tagging efficiency of up to 20% without selection, and up to 60% when selection markers are used. We used target-enrichment sequencing to investigate all potential sources of artifacts. Our work outlines a quick strategy particularly suitable for exploratory studies using endogenous expression of fluorescent protein-tagged genes.


Asunto(s)
Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Marcación de Gen/métodos , Reacción en Cadena de la Polimerasa/métodos , Alelos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , Línea Celular , Células Cultivadas , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Genes Reporteros , Secuenciación de Nucleótidos de Alto Rendimiento , Recombinación Homóloga , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Oligonucleótidos/genética , ARN Guía de Kinetoplastida/genética , Transfección
10.
J Cell Biol ; 219(3)2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-32211891

RESUMEN

Distal appendages (DAs) of the mother centriole are essential for the initial steps of ciliogenesis in G1/G0 phase of the cell cycle. DAs are released from centrosomes in mitosis by an undefined mechanism. Here, we show that specific DAs lose their centrosomal localization at the G2/M transition in a manner that relies upon Nek2 kinase activity to ensure low DA levels at mitotic centrosomes. Overexpression of active Nek2A, but not kinase-dead Nek2A, prematurely displaced DAs from the interphase centrosomes of immortalized retina pigment epithelial (RPE1) cells. This dramatic impact was also observed in mammary epithelial cells with constitutively high levels of Nek2. Conversely, Nek2 knockout led to incomplete dissociation of DAs and cilia in mitosis. As a consequence, we observed the presence of a cilia remnant that promoted the asymmetric inheritance of ciliary signaling components and supported cilium reassembly after cell division. Together, our data establish Nek2 as an important kinase that regulates DAs before mitosis.


Asunto(s)
Centriolos/enzimología , Cilios/enzimología , Células Epiteliales/enzimología , Mitosis , Quinasas Relacionadas con NIMA/metabolismo , Epitelio Pigmentado de la Retina/enzimología , Animales , Sitios de Unión , Línea Celular , Centriolos/genética , Cilios/genética , Femenino , Puntos de Control de la Fase G2 del Ciclo Celular , Células Madre Hematopoyéticas/enzimología , Humanos , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/enzimología , Ratones , Proteínas de Microtúbulos/genética , Proteínas de Microtúbulos/metabolismo , Quinasas Relacionadas con NIMA/genética , Unión Proteica , Epitelio Pigmentado de la Retina/citología , Transducción de Señal , Factores de Tiempo
11.
Nat Cell Biol ; 21(9): 1138-1151, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31481795

RESUMEN

One of the first steps in mitotic spindle assembly is the dissolution of the centrosome linker followed by centrosome separation driven by EG5, a tetrameric plus-end-directed member of the kinesin-5 family. However, even in the absence of the centrosome linker, the two centrosomes are kept together by an ill-defined microtubule-dependent mechanism. Here we show that KIFC3, a minus-end-directed kinesin-14, provides microtubule-based centrosome cohesion. KIFC3 forms a homotetramer that pulls the two centrosomes together via a specific microtubule network. At mitotic onset, KIFC3 activity becomes the main driving force of centrosome cohesion to prevent premature spindle formation after linker dissolution as it counteracts the increasing EG5-driven pushing forces. KIFC3 is eventually inactivated by NEver in mitosis-related Kinase 2 (NEK2) to enable EG5-driven bipolar spindle assembly. We further show that persistent centrosome cohesion in mitosis leads to chromosome mis-segregation. Our findings reveal a mechanism of spindle assembly that is evolutionary conserved from yeast to humans.


Asunto(s)
Centrosoma/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Huso Acromático/metabolismo , Segregación Cromosómica/fisiología , Células HeLa , Humanos , Cinesinas/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis , Quinasas Relacionadas con NIMA/metabolismo
12.
EMBO Rep ; 20(1)2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30467237

RESUMEN

CDC14A codes for a conserved proline-directed phosphatase, and mutations in the gene are associated with autosomal-recessive severe to profound deafness, due to defective kinocilia. A role of CDC14A in cilia formation has also been described in other organisms. However, how human CDC14A impacts on cilia formation remains unclear. Here, we show that human RPE1 hCDC14APD cells, encoding a phosphatase dead version of hCDC14A, have longer cilia than wild-type cells, while hCDC14A overexpression reduces cilia formation. Phospho-proteome analysis of ciliated RPE1 cells identified actin-associated and microtubule binding proteins regulating cilia length as hCDC14A substrates, including the actin-binding protein drebrin. Indeed, we find that hCDC14A counteracts the CDK5-dependent phosphorylation of drebrin at S142 during ciliogenesis. Further, we show that drebrin and hCDC14A regulate the recruitment of the actin organizer Arp2 to centrosomes. In addition, during ciliogenesis hCDC14A also regulates endocytosis and targeting of myosin Va vesicles to the basal body in a drebrin-independent manner, indicating that it impacts primary cilia formation in a multilayered manner.


Asunto(s)
Proteína 2 Relacionada con la Actina/genética , Cilios/genética , Neuropéptidos/genética , Monoéster Fosfórico Hidrolasas/genética , Actinas/genética , Línea Celular , Movimiento Celular/genética , Centrosoma/metabolismo , Cilios/metabolismo , Quinasa 5 Dependiente de la Ciclina/genética , Endocitosis/genética , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Microtúbulos/genética , Mutación , Cadenas Pesadas de Miosina/genética , Miosina Tipo V/genética , Fosforilación , Unión Proteica , Proteínas Tirosina Fosfatasas , Proteoma/genética
13.
J Cell Sci ; 131(18)2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30131441

RESUMEN

Cilia perform essential signalling functions during development and tissue homeostasis. A key event in ciliogenesis occurs when the distal appendages of the mother centriole form a platform that docks ciliary vesicles and removes CP110-Cep97 inhibitory complexes. Here, we analysed the role of LRRC45 in appendage formation and ciliogenesis. We show that the core appendage proteins Cep83 and SCLT1 recruit LRRC45 to the mother centriole. Once there, LRRC45 recruits the keratin-binding protein FBF1. The association of LRRC45 with the basal body of primary and motile cilia in both differentiated and stem cells reveals a broad function in ciliogenesis. In contrast to the appendage components Cep164 and Cep123, LRRC45 was not essential for either docking of early ciliary vesicles or for removal of CP110. Rather, LRRC45 promotes cilia biogenesis in CP110-uncapped centrioles by organising centriolar satellites, establishing the transition zone and promoting the docking of Rab8 GTPase-positive vesicles. We propose that, instead of acting solely as a platform to recruit early vesicles, centriole appendages form discrete scaffolds of cooperating proteins that execute specific functions that promote the initial steps of ciliogenesis.


Asunto(s)
Axonema/metabolismo , Proteínas Portadoras/genética , Cilios/metabolismo , Proteínas de la Membrana/genética , Proteínas Portadoras/metabolismo , Humanos , Proteínas de la Membrana/metabolismo
14.
Dev Biol ; 433(1): 84-93, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29155043

RESUMEN

Spermiogenesis is the final phase during sperm cell development in which round spermatids undergo dramatic morphological changes to generate spermatozoa. Here we report that the serine/threonine kinase Stk33 is essential for the differentiation of round spermatids into functional sperm cells and male fertility. Constitutive Stk33 deletion in mice results in severely malformed and immotile spermatozoa that are particularly characterized by disordered structural tail elements. Stk33 expression first appears in primary spermatocytes, and targeted deletion of Stk33 in these cells recapitulates the defects observed in constitutive knockout mice, confirming a germ cell-intrinsic function. Stk33 protein resides in the cytoplasm and partially co-localizes with the caudal end of the manchette, a transient structure that guides tail elongation, in elongating spermatids, and loss of Stk33 leads to the appearance of a tight, straight and elongated manchette. Together, these results identify Stk33 as an essential regulator of spermatid differentiation and male fertility.


Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , Espermátides/enzimología , Animales , Diferenciación Celular/fisiología , Fertilidad/fisiología , Masculino , Ratones , Ratones Noqueados , Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Espermatocitos/citología , Espermatocitos/enzimología , Espermatogénesis/fisiología , Espermatozoides/enzimología , Testículo/enzimología
15.
Elife ; 62017 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-28853395

RESUMEN

Cytoplasmic microtubules (cMT) control mitotic spindle positioning in many organisms, and are therefore pivotal for successful cell division. Despite its importance, the temporal control of cMT formation remains poorly understood. Here we show that unlike the best-studied yeast Saccharomyces cerevisiae, position of pre-anaphase nucleus is not strongly biased toward bud neck in Ogataea polymorpha and the regulation of spindle positioning becomes active only shortly before anaphase. This is likely due to the unstable property of cMTs compared to those in S. cerevisiae. Furthermore, we show that cMT nucleation/anchoring is restricted at the level of recruitment of the γ-tubulin complex receptor, Spc72, to spindle pole body (SPB), which is regulated by the polo-like kinase Cdc5. Additionally, electron microscopy revealed that the cytoplasmic side of SPB is structurally different between G1 and anaphase. Thus, polo-like kinase dependent recruitment of γ-tubulin receptor to SPBs determines the timing of spindle orientation in O. polymorpha.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomycetales/metabolismo , Cuerpos Polares del Huso/metabolismo , Microscopía Electrónica , Saccharomycetales/ultraestructura
16.
Mol Biol Cell ; 28(7): 883-889, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28148650

RESUMEN

Cell cycle-dependent morphogenesis of unicellular organisms depends on the spatiotemporal control of cell polarity. Rho GTPases are the major players that guide cells through structural reorganizations such as cytokinesis (Rho1 dependent) and polarity establishment (Cdc42 dependent). In budding yeast, the protein Gps1 plays a pivotal role in both processes. Gps1 resides at the bud neck to maintain Rho1 localization and restrict Cdc42 activity during cytokinesis. Here we analyze how Gps1 is recruited to the bud neck during the cell cycle. We show that different regions of Gps1 and the septin-associated kinase Gin4 are involved in maintaining Gps1 at the bud neck from late G1 phase until midanaphase. From midanaphase, the targeting function of Gin4 is taken over by the bud neck-associated protein Nba1. Our data show that Gps1 is targeted to the cell division site in a biphasic manner, via Gin4 and Nba1, to control the spatiotemporal activation of Rho1 and inhibition of Cdc42.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/metabolismo , División Celular/fisiología , Citocinesis , Mitosis , Proteínas Quinasas/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Septinas/metabolismo , Transducción de Señal , Proteínas de Unión al GTP rho/metabolismo
17.
Nat Commun ; 8: 14129, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28117323

RESUMEN

The spatiotemporal control of mitotic exit is crucial for faithful chromosome segregation during mitosis. In budding yeast, the mitotic exit network (MEN) drives cells out of mitosis, whereas the spindle position checkpoint (SPOC) blocks MEN activity when the anaphase spindle is mispositioned. How the SPOC operates at a molecular level remains unclear. Here, we report novel insights into how mitotic signalling pathways orchestrate chromosome segregation in time and space. We establish that the key function of the central SPOC kinase, Kin4, is to counterbalance MEN activation by the cdc fourteen early anaphase release (FEAR) network in the mother cell compartment. Remarkably, Kin4 becomes dispensable for SPOC function in the absence of FEAR. Cells lacking both FEAR and Kin4 show that FEAR contributes to mitotic exit through regulation of the SPOC component Bfa1 and the MEN kinase Cdc15. Furthermore, we uncover controls that specifically promote mitotic exit in the daughter cell compartment.


Asunto(s)
Genes Fúngicos/fisiología , Mitosis/fisiología , Transducción de Señal/fisiología , Huso Acromático/fisiología , Segregación Cromosómica/fisiología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Methods Mol Biol ; 1505: 167-182, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27826864

RESUMEN

Fluorescence recovery after photobleaching (FRAP) is a powerful technique to study in vivo binding and diffusion dynamics of fluorescently labeled proteins. In this chapter, we describe how to determine spindle pole body (SPB) binding dynamics of mitotic exit network (MEN) and spindle position checkpoint (SPOC) proteins using FRAP microscopy. Procedures presented here include the growth of the yeast cultures, sample preparation, image acquisition and analysis.


Asunto(s)
Proteínas de Ciclo Celular/análisis , Recuperación de Fluorescencia tras Fotoblanqueo/métodos , Microscopía Fluorescente/métodos , Proteínas de Saccharomyces cerevisiae/análisis , Saccharomyces cerevisiae/citología , Cuerpos Polares del Huso/metabolismo , Proteínas de Ciclo Celular/metabolismo , Puntos de Control de la Fase M del Ciclo Celular , Mitosis , Imagen Óptica/métodos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Cuerpos Polares del Huso/ultraestructura
19.
J Cell Biol ; 214(5): 499-501, 2016 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-27551057

RESUMEN

In mitotic exit, proteins that were highly phosphorylated are sequentially targeted by the phosphatase PP2A-B55, but what underlies substrate selection is unclear. In this issue, Cundell et al. (2016. J. Cell Biol http://dx.doi.org/10.1083/jcb.201606033) identify the determinants of PP2A-B55's dephosphorylation program, thereby influencing spindle disassembly, nuclear envelope reformation, and cytokinesis.


Asunto(s)
Mitosis , Proteína Fosfatasa 2/metabolismo , Células HeLa , Humanos , Modelos Biológicos , Fosforilación , Huso Acromático/metabolismo , Especificidad por Sustrato
20.
Elife ; 52016 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-27159239

RESUMEN

The spindle position checkpoint (SPOC) is a spindle pole body (SPB, equivalent of mammalian centrosome) associated surveillance mechanism that halts mitotic exit upon spindle mis-orientation. Here, we monitored the interaction between SPB proteins and the SPOC component Bfa1 by FRET microscopy. We show that Bfa1 binds to the scaffold-protein Nud1 and the γ-tubulin receptor Spc72. Spindle misalignment specifically disrupts Bfa1-Spc72 interaction by a mechanism that requires the 14-3-3-family protein Bmh1 and the MARK/PAR-kinase Kin4. Dissociation of Bfa1 from Spc72 prevents the inhibitory phosphorylation of Bfa1 by the polo-like kinase Cdc5. We propose Spc72 as a regulatory hub that coordinates the activity of Kin4 and Cdc5 towards Bfa1. In addition, analysis of spc72∆ cells shows that a mitotic-exit-promoting dominant signal, which is triggered upon elongation of the spindle into the bud, overrides the SPOC. Our data reinforce the importance of daughter-cell-associated factors and centrosome-based regulations in mitotic exit and SPOC control.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Mitosis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Cuerpos Polares del Huso/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Microscopía Fluorescente , Mapeo de Interacción de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...