Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Electron Mater ; 4(5): 2502-2515, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35647554

RESUMEN

Here, the alpha amino acid l-alanine is employed as both a capping and stabilizing agent in the aqueous synthesis of submicron-sized metallic copper particles under ambient atmospheric conditions. The reduction of the copper(II) precursor is achieved using l-ascorbic acid (vitamin C) as the reducing agent. The nature of the complex formed between l-alanine and the copper(II) precursor, pH of the medium, temperature, and the relative proportion of capping agent are found to play a significant role in determining the size, shape, and oxidative stability of the resulting particles. The adsorbed l-alanine is shown to act as a barrier imparting excellent thermal stability to capped copper particles, delaying the onset of temperature-induced aerial oxidation. The stability of the particles is complemented by highly favorable sintering conditions, rendering the formation of conductive copper films at significantly lower temperatures (T ≤ 120 °C) compared to alternative preparation methods. The resulting copper films are well-passivated by residual surface l-alanine molecules, promoting long-term stability without hindering the surface chemistry of the copper film as evidenced by the catalytic activity. Contrary to the popular belief that ligands with long carbon chains are best for providing stability, these findings demonstrate that very small ligands can provide highly effective stability to copper without significantly deteriorating its functionality while facilitating low-temperature sintering, which is a key requirement for emerging flexible electronic applications.

2.
ACS Appl Mater Interfaces ; 11(1): 43-48, 2019 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-30565451

RESUMEN

It is now recognized that for solution processed organic photovoltaics (OPVs) to be manufactured on a large scale the thickness of the photoactive layer must be substantially increased beyond the currently used ≤150 nm. We show that copper can replace silver as the reflective substrate electrode in high performance top-illuminated OPVs without compromising device power conversion efficiency when the photoactive layer is thick enough to absorb the majority of incident photons on the first pass through the photoactive layer. Copper is one hundredth of the cost of Ag, enabling a significant reduction in the bill of materials for OPV manufacture.

3.
Sci Rep ; 8(1): 15722, 2018 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-30356065

RESUMEN

We report the findings of a study into the suitability of copper (I) thiocyanate (CuSCN) as a hole-transport layer in inverted photovoltaic (PV) devices based on the black gamma phase (B-γ) of CsSnI3 perovskite. Remarkably, when B-γ-CsSnI3 perovskite is deposited from a dimethylformamide solution onto a 180-190 nm thick CuSCN film supported on an indium-tin oxide (ITO) electrode, the CuSCN layer is completely displaced leaving a perovskite layer with high uniformity and coverage of the underlying ITO electrode. This finding is confirmed by detailed analysis of the thickness and composition of the film that remains after perovskite deposition, together with photovoltaic device studies. The results of this study show that, whilst CuSCN has proved to be an excellent hole-extraction layer for high performance lead-perovskite and organic photovoltaics, it is unsuitable as a hole-transport layer in inverted B-γ-CsSnI3 perovskite photovoltaics processed from solution.

4.
Nat Commun ; 8(1): 1894, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29196617

RESUMEN

Copper nanoparticles (CuNPs) are attractive as a low-cost alternative to their gold and silver analogues for numerous applications, although their potential has hardly been explored due to their higher susceptibility to oxidation in air. Here we show the unexpected findings of an investigation into the correlation between the air-stability of CuNPs and the structure of the thiolate capping ligand; of the eight different ligands screened, those with the shortest alkyl chain, -(CH2)2-, and a hydrophilic carboxylic acid end group are found to be the most effective at retarding oxidation in air. We also show that CuNPs are not etched by thiol solutions as previously reported, and address the important fundamental question of how the work function of small supported metal particles scales with particle size. Together these findings set the stage for greater utility of CuNPs for emerging electronic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...