Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nat Prod Res ; : 1-5, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767203

RESUMEN

Aqueous and hydroalcoholic extracts from the pulp of Ambelania acida Aubl. (Apocynaceae) fruits were subjected to analysis through UHPLC-HRMS and antioxidant potential using the TPC, DPPH, ABTS, FRAP, and ORAC assays. A putative identification of the compounds carried out by comparison of the fragmentation spectra revealed the predominance of the monoterpene indole alkaloids tabersonine, pseudocopsinine, ajmalicine, and strictosidine. Additionally, gallic acid, caffeic acid, citric acid, 3-O-p-coumaroylquinic acid, chlorogenic acid, catechin, ellagic acid, eschweilenol C (ellagic acid deoxyhexoside), and sucrose were identified. In face of the phenolic compounds observed, hydroalcoholic extract showed a higher antioxidant activity compared to the aqueous extract, observed at TPC (108.85 mg GAE/100g), FRAP (0.73 µmol Fe2SO4/g), DPPH (1221.76 µmol TE/g), ABTS (3460.00 µmol TE/g), and ORAC assays (120.47 µmol TE/g). These findings underscore the abundant presence of bioactive compounds, including phenolics and alkaloids, in an edible Amazonian fruit.

2.
J Pharm Sci ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38815860

RESUMEN

Rotigotine (RTG) is a dopamine agonist used in the treatment of Parkinson's disease. As it is susceptible to oxidation, stability studies must be carefully designed for the identification and characterization of all possible degradation products. Here, RTG degradation was evaluated according to the International Conference on Harmonization guidelines under various stress conditions, including acidic and basic hydrolysis, oxidative, metallic, photolytic, and thermal conditions. Additionally, more severe stress conditions were applied to induce RTG degradation. Significant degradation was only observed under oxidative and photolytic conditions. The samples were analyzed by high performance liquid chromatography coupled to photodiode array detectors, charged aerosol, and high-resolution mass spectrometry. Chromatographic analyses revealed the presence of eight substances related to RTG, four of which were already described and were qualified impurities (impurities B, C, K and E) and four new degradation products (DP-1 - DP-4), whose structures were characterized by high-resolution mass spectrometry through Q-Orbitrap and electrospray ionization. In the stress testing of the active pharmaceutical ingredient in solid form, significant RTG degradation was observed in the presence of the oxidative matrix. The results corroborate the literature that confirm the high susceptibility of RTG to oxidation and the importance of using different detectors to detect degradation products in forced degradation studies.

3.
Plants (Basel) ; 13(6)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38592892

RESUMEN

Ocotea, the largest genus in the Lauraceae family, encompasses numerous species of scientific interest. However, most Ocotea species have only been described morphologically. This study used an untargeted metabolomics workflow with UHPLC-HRMS and GNPS-FBMN to provide the first chemical evaluation of the polar specialized metabolites of O. delicata leaves. Leaves from three O. delicata specimens were extracted using ultrasound-assisted extraction with 70% ethanol. Among the examined samples, 44 metabolites, including alkaloids and flavonoids, were identified. In contrast to other Ocotea species, O. delicata has a wider diversity of kaempferol derivatives than quercetin. The biomass of the specimens showed a significant correlation with the chemical profile. The similarity among specimens was mostly determined by the concentrations of quinic acid, kaempferol glycosides, and boldine. The evaluated specimens exhibited chemical features similar to those of species classified as New World Ocotea, with the coexistence of aporphine and benzylisoquinoline alkaloids.

4.
J Chromatogr A ; 1708: 464362, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37717453

RESUMEN

Psychedelic compounds have gained renewed interest for their potential therapeutic applications, but their metabolism and effects on complex biological systems remain poorly understood. Here, we present a systematic characterization of Lysergic Acid Diethylamide (LSD) metabolites in the model organism Caenorhabditis elegans using state-of-the-art analytical techniques. By employing ultra-high performance liquid chromatography coupled with high-resolution tandem mass spectrometry, we putatively identified a range of LSD metabolites, shedding light on their metabolic pathways and offering insights into their pharmacokinetics. Our study demonstrates the suitability of Caenorhabditis elegans as a valuable model system for investigating the metabolism of psychedelic compounds and provides a foundation for further research on the therapeutic potential of LSD.


Asunto(s)
Caenorhabditis elegans , Alucinógenos , Animales , Cromatografía Líquida de Alta Presión , Dietilamida del Ácido Lisérgico , Espectrometría de Masas en Tándem
5.
Drug Test Anal ; 15(11-12): 1488-1502, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37525530

RESUMEN

Higenamine is prohibited in sports as a ß2 -agonist by the World Anti-Doping Agency. As a key component of a great variety of plants, including the Annonaceae family, one aim of this research project was to evaluate whether the ingestion of Annona fruit could lead to higenamine adverse analytical findings. Single-dose administration studies including three Annona species (i.e., Annona muricata, Annona cherimola, and Annona squamosa) were conducted, leading to higenamine findings below the established minimum reporting level (MRL) of 10 ng/mL in urine. In consideration of cmax values (7.8 ng/mL) observed for higenamine up to 24 h, a multidose administration study was also conducted, indicating cumulative effects, which can increase the risk of exceeding the applicable MRL doping after Annona fruit ingestion. In this study, however, the MRL was not exceeded at any time point. Further, the major urinary excretion of higenamine in its sulfo-conjugated form was corroborated, its stability in urine was assessed, and in the absence of reference material, higenamine sulfo-conjugates were synthesized and comprehensively characterized, suggesting the predominant presence of higenamine 7-sulfate. In addition, the option to include complementary biomarkers of diet-related higenamine intake into routine doping controls was investigated. A characteristic urinary pattern attributed to isococlaurine, reticuline, and a yet not fully characterized bismethylated higenamine glucuronide was observed after Annona ingestion but not after supplement use, providing a promising dataset of urinary biomarkers, which supports the discrimination between different sources of urinary higenamine detected in sports drug testing programs.


Asunto(s)
Annona , Frutas , Detección de Abuso de Sustancias , Biomarcadores
6.
Metabolites ; 13(2)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36837895

RESUMEN

In this study, a beetroot peel flour was made, and its in vitro antioxidant activity was determined in aqueous (BPFw) and ethanolic (BPFe) extracts. The influence of BPFw on breast cancer cell viability was also determined. A targeted betalain profile was obtained using high-resolution Q-Extractive Plus Orbitrap mass spectrometry (Obrtitrap-HRMS) alongside untargeted chemical profiling of BPFw using Ultra-High-Performance Liquid Chromatography with High-Resolution Mass Spectrometry (UHPLC-HRMS). BPFw and BPFe presented satisfactory antioxidant activities, with emphasis on the total phenolic compounds and ORAC results for BPFw (301.64 ± 0.20 mg GAE/100 g and 3032.78 ± 55.00 µmol T/100 g, respectively). The MCF-7 and MDA-MB-231 breast cancer cells presented reductions in viability when treated with BPFw, showing dose-dependent behavior, with MDA-MB-231 also showing time-dependent behavior. The chemical profiling of BPFw led to the identification of 9 betalains and 59 other compounds distributed amongst 28 chemical classes, with flavonoids and their derivates and coumarins being the most abundant. Three forms of betalain generated via thermal degradation were identified. However, regardless of thermal processing, the BPF still presented satisfactory antioxidant and anticancer activities, possibly due to synergism with other identified molecules with reported anticancer activities via different metabolic pathways.

7.
Drug Test Anal ; 15(3): 292-298, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36346023

RESUMEN

Blood transfusion is performed by cheating athletes to rapidly increase oxygen delivery to exercise muscles and enhance their performance. This method is banned by the World Anti-doping Agency (WADA). Heterologous or allogenic blood transfusion happens when blood from a different person is transfused. The method used to detect this type of doping is based on flow cytometry, by identifying variations in blood group minor antigens present on the red blood cells' surface. Transfusion practices have regained interest since the introduction of human recombinant erythropoietin detection method. It has been reported that the number of occurrences of two athletes sharing an identical phenotype in the same sport was five times higher than the theoretical populational probability. The present work describes the prevalence of 10 erythrocytes surface antigens in a population of 261 athletes from all five continents. The matching phenotype per sport is also described.


Asunto(s)
Doping en los Deportes , Deportes , Humanos , Transfusión Sanguínea , Eritrocitos , Atletas
9.
Nat Prod Res ; 36(4): 984-988, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33103472

RESUMEN

The metabolic fingerprint of a non-volatile fraction of Ocotea canaliculata (Rich.) Mez (Lauraceae) leaves was determined by UHPLC-HRMS analysis. Twenty-four compounds were suggestively identified by GNPS-FBMN. The results revealed a large production of flavonoids, mainly flavones and flavanones, a chemical class poorly described in the Ocotea genus. Within the identified compounds, four are being described for the first time in this genus. The major metabolite detected was astilbin, with a concentration corresponding to 23.2 ± 1.58% of the extracts. The expressive content of astilbin also highlights it as a chemical marker for the species. As a species that is classified as a complex, qualitative and semi-quantitative features obtained through the O. canaliculata flavonoid fingerprint can be further used for a more precise circumscription and species-specific characterization.


Asunto(s)
Lauraceae , Ocotea , Cromatografía Líquida de Alta Presión , Lauraceae/química , Ocotea/química , Extractos Vegetales/química , Hojas de la Planta/química
10.
Artículo en Inglés | MEDLINE | ID: mdl-34801941

RESUMEN

Coffee is one of the most consumed beverages worldwide. Cafestol is an endogenous coffee diterpene present in raw coffee beans and also found in hot beverages, with several biological activities. However, there is still little information on this molecule after ingestion of coffee infusion. Zebrafish (Danio rerio) is a promising in vivo model for metabolic studies due to the annotation of mammalian orthologs to encode enzymes related to drug metabolism. Experiments using Zebrafish Water Tank (ZWT) model produce more significant number of metabolites for molecular investigation in a cleaner matrix than other classical models, such as purified hepatocytes. This work aimed to investigate the biotransformation of cafestol by the ZWT model using ultra-performance liquid chromatography coupled to hybrid quadrupole-orbitrap high-resolution mass spectrometry equipped with electrospray ionization (UPLC-HRMS) supported by in silico approach using SMARTCyp, Way2Drug and XenoSite Softwares. Twenty-five metabolites of cafestol were proposed by in silico analysis, in which 5 phase I metabolites were confirmed in the ZWT by UPLC and MS/HRMS investigation: 6-hydroxy-cafestol, 6,12-dihydroxy-cafestol, 2-oxo-cafestol, 6-oxo-cafestol and one isomer whose position in the carboxyl group was not determined. These metabolites were observed during 9 h of the experiment, whose contents were associated with the behavioral responses of the fish.


Asunto(s)
Diterpenos/química , Diterpenos/metabolismo , Pez Cebra/metabolismo , Animales , Biotransformación , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Café/química , Café/metabolismo , Simulación por Computador , Espectrometría de Masas , Modelos Animales , Estructura Molecular
11.
Artículo en Inglés | MEDLINE | ID: mdl-34225244

RESUMEN

Knowledge of the metabolic profile is essential for doping control analysis in sport since most drugs are excreted after an elaborate biotransformation process. Currently, Zebrafish Water Tank (ZWT) model has been applied to investigate the metabolism of different doping agents. Nevertheless, the class of glucocorticoids has not been subjected to this model for metabolism studies. In the present work, budesonide (BUD) was applied as a pilot to investigate the metabolic pathways of glucocorticoids in the ZWT model. The BUD biotransformation in ZWT model was compared to the described metabolism in humans. Samples from ZWT experiments were collected after BUD administration and analyzed by Liquid Chromatography coupled to High Resolution Mass Spectrometry (LC-HRMS). Following the identification and characterization of all significant metabolites described for humans, it was observed that the ZWT was able to produce in a relevant amount the main target for doping control purposes: the 6ß-hydroxy BUD. In addition, prior knowledge about the lack of butyrylcholinesterase activity in the zebrafish organism was considered for the evaluation for the formation of the 16α-hydroxy prednisolone, the most intense BUD metabolite in human urine. Biotransformation of BUD by ZWT focused on metabolites with the acetal fraction preserved, including the intermediate metabolite for the 16α-hydroxy prednisolone pathway. However,analternative metabolic pathway for the complete biotransformation of the 16α-hydroxy prednisolone intermediate was not observed, leading to the absence of the major human metabolite in the ZWT model. The findings reported in this study elucidate for the first time the application and limitations of the ZWT model to evaluate the metabolism of other glucocorticoids.


Asunto(s)
Budesonida/metabolismo , Glucocorticoides/metabolismo , Modelos Biológicos , Animales , Biotransformación , Cromatografía Liquida/métodos , Doping en los Deportes , Humanos , Espectrometría de Masas en Tándem , Pez Cebra
12.
Biomed Pharmacother ; 141: 111857, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34323702

RESUMEN

Quinoline and 1,2,3-triazoles are well-known nitrogen-based heterocycles presenting diverse pharmacological properties, although their antileishmanial activity is still poorly exploited. As an effort to contribute with studies involving these interesting chemical groups, in the present study, a series of compounds derived from 4-aminoquinoline and 1,2,3-triazole were synthetized and biological studies using L. amazonensis species were performed. The results pointed that the derivative 4, a hybrid of 4-aminoquinoline/1,2,3-triazole exhibited the best antileishmanial action, with inhibitory concentration (IC50) values of ~1 µM against intramacrophage amastigotes of L. amazonensis , and being 16-fold more active to parasites than to the host cell. The mechanism of action of derivative 4 suggest a multi-target action on Leishmania parasites, since the treatment of L. amazonensis promastigotes caused mitochondrial membrane depolarization, accumulation of ROS products, plasma membrane permeabilization, increase in neutral lipids, exposure of phosphatidylserine to the cell surface, changes in the cell cycle and DNA fragmentation. The results suggest that the antileishmanial effect of this compound is primarily altering critical biochemical processes for the correct functioning of organelles and macromolecules of parasites, with consequent cell death by processes related to apoptosis-like and necrosis. No up-regulation of reactive oxygen and nitrogen intermediates was promoted by derivative 4 on L. amazonensis -infected macrophages, suggesting a mechanism of action independent from the activation of the host cell. In conclusion, data suggest that derivative 4 presents selective antileishmanial effect, which is associated with multi-target action, and can be considered for future studies for the treatment against disease.


Asunto(s)
Aminoquinolinas/farmacología , Antiprotozoarios/farmacología , Leishmania mexicana/efectos de los fármacos , Triazoles/farmacología , Aminoquinolinas/síntesis química , Animales , Antiprotozoarios/química , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Membrana Celular/química , Membrana Celular/metabolismo , Fragmentación del ADN/efectos de los fármacos , Femenino , Metabolismo de los Lípidos/efectos de los fármacos , Macrófagos/parasitología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Orgánulos/efectos de los fármacos , Fosfatidilserinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Triazoles/síntesis química
13.
Nat Prod Res ; 35(21): 4192-4196, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32290698

RESUMEN

Freshwater sponges can be considered a promising new source of bioactive compounds for the pharmaceutical industry; however, the research on their chemical composition is still in the incipient stage. We evaluated the most endemic Amazonian freshwater sponge species from the Drulia and Metania genera by untargeted metabolomic approaches, based on UHPCL-HRMS, in order to identify chemical markers and explore the diversity of specialized metabolites. The use of untargeted approaches allowed us to observe subsets of metabolites that enabled the characterization of, not only each genus, but also, of each species. Freshwater sponge species presented themselves as rich sources of fatty acids and sterols, which were putatively identified. These metabolites were suggested as chemical markers for further targeted metabolomic studies.


Asunto(s)
Agua Dulce , Poríferos , Animales , Ácidos Grasos , Metabolómica , Esteroles
14.
RSC Adv ; 11(40): 25096-25103, 2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35481022

RESUMEN

Untargeted metabolomics is a powerful tool in chemical fingerprinting. It can be applied in phytochemistry to aid species identification, systematic studies and quality control of bioproducts. This approach aims to produce as much chemical information as possible, without focusing on any specific chemical class, thus, requiring extensive chemometric effort. This study aimed to evaluate the feasibly of an untargeted metabolomics method in phytochemistry by a study case of the Copaifera genus (Fabaceae). This genus contains significant medicinal species used worldwidely. Copaifera exploitation issues include a lack of chemical data, ambiguous species identification methods and absence of quality control for its bioproducts. Different organs of five Copaifera species were analysed by UHPLC-HRMS/MS, GNPS platform and chemometric tools. Untargeted metabolomics enabled the identification of 19 chemical markers and 29 metabolites, distinguishing each sample by species, plant organs, and biome type. Chemical markers were classified as flavonoids, terpenoids and condensed tannins. The applied method provided reliable information about species chemodiversity using fast workflow with little sampling size. The untargeted approach by UHPLC-HRMS/MS proved to be a promising tool for species identification, pharmacological prospecting and in the future for the quality control of extracts used in the manufacture of bioproducts.

15.
RSC Adv ; 10(6): 3459-3471, 2020 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-35497754

RESUMEN

Untargeted metabolomics aim to provide a global chemical fingerprint of biological matrices. This research field can be used in phytochemical screenings for bioactive species or in the identification of species. Despite its importance in providing a global chemical profile, little research has focused on the optimization of the extraction methods, as each type of matrix requires a specific procedure. Therefore, we propose to evaluate the effect of different extraction features in an ultrasound-assisted extraction for the untargeted metabolomic study of an Ocotea species, a genus of great economical interest but little chemical exploitation. Method optimization was performed in a full factorial 2232 design, evaluating the solvent composition, extraction temperature, sample particle size and sample : solvent ratio effects in the metabolomic response. The effect of these parameters on the quality of the untargeted metabolomic profiles was studied by analysis of the extraction yield as well as the chromatographic and spectrometric profiles. Most substances identified were glycosylated flavonoids and aporphinic alkaloids. The application of 70% ethanol enhanced the extraction of several specialized metabolites. Statistical analysis of extraction yield and chemical profiles indicates that high temperatures and low proportion between sample and extracting solvent reduce the quality and modify the chemical profile, both qualitatively and quantitatively. The use of 70% ethanol as the extracting solvent, 1 : 12 sample : solvent ratio, 40 °C as the extraction temperature and particle size of 0.595 mm were the optimized conditions to produce a comprehensive chemical profile for Ocotea guianensis.

16.
Anal Chem ; 91(18): 11747-11756, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31423767

RESUMEN

Carbon isotope ratio (CIR) confirmation is one of the most complex and delicate analyses in the doping control field, due to the nature of the molecules to be confirmed, normally present in urinary samples as a consequence of an endogenous production. The requirements for method validation established by the World Anti-Doping Agency (WADA) have been pushing the accredited laboratories to improve their methods. The choice of the method is always a cost benefit ratio involving a hard-working and time-consuming analysis and the guarantee of reporting of reliable results. This work presents the method fully validated by the Brazilian Doping Control Laboratory as part of the preparation for the Rio de Janeiro Summer Olympic and Paralympic Games 2016. Sample preparation encompassed solid-phase extraction, liquid-liquid extraction, enzymatic hydrolysis, acetylation, and purification by preparative high-performance liquid chromatography, and analyses were performed by gas chromatography/combustion/isotope ratio mass spectrometry. This proved to be a robust method to CIR confirmation in a big event, as demonstrated by the analysis of 179 samples during the Games 2016, from clearly negative results and adverse findings for testosterone (T) and related substances, boldenone and its metabolite, 19-norandrosterone and formestane. Two atypical findings were also reported for T and metabolites.


Asunto(s)
Isótopos de Carbono/orina , Doping en los Deportes , Cromatografía de Gases y Espectrometría de Masas/métodos , Congéneres de la Testosterona/orina , Acetilación , Brasil , Cromatografía Líquida de Alta Presión , Estranos/orina , Humanos , Extracción Líquido-Líquido , Reproducibilidad de los Resultados , Extracción en Fase Sólida , Deportes , Testosterona/análogos & derivados , Testosterona/orina
17.
Artículo en Inglés | MEDLINE | ID: mdl-31362180

RESUMEN

Sibutramine is cited by the World Anti-Doping Agency as a stimulant. According to the literature, sibutramine is extensively metabolized into N-desmethyl-sibutramine (M1), N-bisdesmethyl-sibutramine (M2) and monohydroxy derivatives of M1 and M2. Therefore, it is important to verify new sibutramine metabolites through current analytical methodologies, such as liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS). Furthermore, the development of a comprehensive approach to investigate sibutramine metabolism can increase the detection window for stimulant misuse and enable advancements in pharmacological studies. This work aimed to develop and evaluate the performance of an LC-HRMS method applying Design of Experiments (DoE) for sibutramine metabolite analysis in human urine. After optimizing the method by DoE, the final chromatographic conditions were based on reversed-phase chromatography using a C18 column with a ramp time of 25 min, a flow rate of 0.17 mL min-1 and a temperature of 50 °C. Mobile phase A consisted of water with 0.1% formic acid and 5 mM ammonium formate, and mobile phase B consisted of methanol with 0.1% formic acid; the initial gradient percent was 15% B, and the injection volume was 5 µL. In addition to the hydroxylated metabolites previously described in human urine, dihydroxy derivatives of M1 and M2 were observed for the first time. These dihydroxy derivative metabolites can be applied as new targets for doping control.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Ciclobutanos/orina , Espectrometría de Masas/métodos , Ciclobutanos/química , Doping en los Deportes , Humanos
18.
Drug Test Anal ; 11(6): 772-781, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30636357

RESUMEN

Erythropoiesis-stimulating agents (ESAs) have been used in horses for doping purposes to increase the performance of these animals in endurance sports. Currently, enzyme-linked immunosorbent assay (ELISA) and mass spectrometry methods are used to detect ESA abuse in equines. However, the sarcosyl polyacrylamide gel-electrophoresis (SAR-PAGE) technique could also be used, since its application in human doping control is well established and has proven to be more sensitive. In this work, the SAR-PAGE method was used to detect recombinant human erythropoietin (rHuEPO), novel erythropoiesis stimulating protein (NESP), continuous erythropoietin receptor activator (CERA), and fusion protein of erythropoietin with human immunoglobulin heavy chain Fc region (EPO-Fc) in horse blood and urine. The purification technique for human blood using MAIIA kits worked well for horse samples. The major challenge was horse urine immunopurification, which proved difficult due to filter clogging, but heating and cooling of the horse urine followed by filtration in 30-kDa molecular weight cut-off filters solved this problem. The limits of detection (LODs) of 1.3, 1.6, 6.6, and 13.3 pg/mL for rHuEPO, NESP, CERA, and EPO-Fc, respectively, obtained in spiked urine and 40, 100, 80, and 400 pg/mL for rHuEPO, NESP, CERA, and EPO-Fc, respectively, acquired in spiked blood are lower than the LODs reported in the literature using liquid chromatography-mass spectrometry (LC-MS) methods. In addition, the presence of ESAs was detected up to 9 days after the administration of microdoses of Hemax (rHuEPO), NESP, and CERA in horse blood and urine. SAR-PAGE may be implemented in the routine analysis of horse doping control laboratories for screening and confirmation of ESA abuse, mainly due to its high sensitivity for both matrices compared to published mass spectrometric methods.


Asunto(s)
Electroforesis en Gel de Poliacrilamida/métodos , Eritropoyetina/sangre , Eritropoyetina/orina , Caballos/sangre , Caballos/orina , Animales , Detergentes/química , Doping en los Deportes , Masculino , Sustancias para Mejorar el Rendimiento/sangre , Sustancias para Mejorar el Rendimiento/orina , Sarcosina/análogos & derivados , Sarcosina/química , Detección de Abuso de Sustancias/métodos
19.
Artículo en Inglés | MEDLINE | ID: mdl-29969680

RESUMEN

Zebrafish has become a popular model organism in several lines of biological research sharing physiological, morphological and histological similarities with mammals. In fact, many human cytochrome P450 (CYP) enzymes have direct orthologs in zebrafish, suggesting that zebrafish xenobiotic metabolic profiles may be similar to those in mammals. The focus of the review is to analyse the studies that have evaluated the metabolite production in zebrafish over the years, either of the drugs themselves or xenobiotics in general (environmental pollutants, natural products, etc.), bringing a vision of how these works were performed and comparing, where possible, with human metabolism. Early studies that observed metabolic production by zebrafish focused on environmental toxicology, and in recent years the main focus has been on toxicity screening of pharmaceuticals and drug candidates. Nevertheless, there is still a lack of standardization of the model and the knowledge of the extent of similarity with human metabolism. Zebrafish screenings are performed at different life stages, typically being carried out in adult fish through in vivo assays, followed by early larval stages and embryos. Studies comparing metabolism at the different zebrafish life stages are also common. As with any non-human model, the zebrafish presents similarities and differences in relation to the profile of generated metabolites compared to that observed in humans. Although more studies are still needed to assess the degree to which zebrafish metabolism can be compared to human metabolism, the facts presented indicate that the zebrafish is an excellent potential model for assessing xenobiotic metabolism.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Hígado/efectos de los fármacos , Pruebas de Toxicidad/métodos , Xenobióticos/farmacocinética , Pez Cebra/fisiología , Animales , Productos Biológicos/farmacocinética , Biotransformación , Drogas en Investigación/farmacocinética , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Humanos , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Larva/metabolismo , Hígado/embriología , Hígado/crecimiento & desarrollo , Hígado/metabolismo , Especificidad de Órganos , Especificidad de la Especie , Toxicocinética , Pez Cebra/embriología , Pez Cebra/crecimiento & desarrollo
20.
Saudi Pharm J ; 26(3): 311-322, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29556122

RESUMEN

Cancer is one of the biggest problems in public health worldwide. Plants have been shown important role in anticancer research. Viscum album L. (Santalaceae), commonly known as mistletoe, is a semi-parasitic plant that grows on different host trees. In complementary medicine, extracts from European mistletoe (Viscum album L.) have been used in the treatment of cancer. The study was conducted to identify chemical composition and antitumor potential of Viscum album tinctures. Chemical analysis performed by high resolution chromatography equipped with high resolution mass spectrometer identified caffeic acid, chlorogenic acid, sakuranetin, isosakuranetin, syringenin 4-O-glucoside, syringenin 4-O-apiosyl-glucoside, alangilignoside C and ligalbumoside A compounds. Some of these compounds are probably responsible for the reduction of tumoral cellular growth in a dose-dependent manner. It was observed that melanoma murine cells (B16F10) were more sensitive to V. album tinctures than human leukaemic cells (K562), besides non-tumoral cells (MA-104) had a much lower cytotoxicity to them. Apoptotic-like cells were observed under light microscopy and were confirmed by a typical DNA fragmentation pattern. Additionally, flow cytometry results using Annexin-V/FITC permitted to quantify increased expression of early and late apoptotic markers on tumoral cells, confirming augmented Sub G0 population, which was probably associated with a consistent decrease in G1, and an increase in S or G2/M populations. Results indicate the chemical composition of V. album tinctures influences the mechanisms of in vitro tumoral cell death, suggesting a potential use in cancer pharmacotherapy research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...