Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oxid Med Cell Longev ; 2023: 2252213, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36756300

RESUMEN

Background and Aims: Sepsis is defined as a life-threatening organ dysfunction due to a dysregulated host immune response to an infection. Curcumin is a yellow polyphenol derived from the rhizome of Curcuma longa with anti-inflammatory and antioxidant properties scientifically proven, a condition that allowed its use as a tool in the treatment of sepsis. Thus, the purpose of this article was to systematically review the evidence on the impact of curcumin's anti-inflammatory effect on experimental sepsis. Methods: For this, the PubMed, MEDLINE, EMBASE, Scopus, Web of Science, and LILACS databases were used, and the research was not limited to a specific publication period. Only original articles in English using in vivo experimental models (rats or mice) of sepsis induction performed by administration of lipopolysaccharide (LPS) or cecal ligation and perforation surgery (CLP) were included in the study. Studies using curcumin in dry extract or with a high degree of purity were included. At initial screening, 546 articles were selected, and of these, 223 were eligible for primary evaluation. Finally, 12 articles with full text met all inclusion criteria. Our results showed that curcumin may inhibit sepsis-induced complications such as brain, heart, liver, lungs, and kidney damage. Curcumin can inhibit inflammatory factors, prevent oxidative stress, and regulate immune responses in sepsis. Additionally, curcumin increased significantly the survival rates after experimental sepsis in several studies. The modulation of the immune response and mortality by curcumin reinforces its protective effect on sepsis and indicates a potential therapeutic tool for the treatment of sepsis.


Asunto(s)
Curcumina , Sepsis , Ratas , Ratones , Animales , Curcumina/farmacología , Curcumina/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Estrés Oxidativo , Sepsis/tratamiento farmacológico
2.
Aesthetic Plast Surg ; 47(6): 2813-2822, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36607354

RESUMEN

Nowadays, aesthetic concerns have gained attention, especially by patients looking for a less invasive alternative to minor facial corrections. Polymethylmethacrylate (PMMA) is widely used as a soft tissue filler; the demand for this polymer has increased, and along with it, there are some reports of adverse reactions. Such adverse reactions stem from consequences of immune and inflammatory reactions to PMMA. Some animal models have been used to unravel the causes of these reactions, among other factors involving the management of PMMA. The aim of this study was to determine the immunogenic profile of PMMA implantation in different anatomical planes of mice, over up to 360 experimental days. In this study, BALB/c mice were divided into 30 groups for immune evaluation of the interaction between the organism and the polymer; 2% PMMA was implanted subcutaneously, 10% intramuscularly and 30% in periosteal juxtaposition and followed during five experimental days (7, 30, 90, 180 and 360 days after implantation-DAI). Pro- and anti-inflammatory cytokines (IL-2, IL-4, IL-6, IFN-gamma, TNF, IL-17A, IL-10 and TGF-beta) were quantified in all experimental days. There was no statistical difference between the groups analyzed considering the evaluated parameters. Therefore, at all implanted depths, PMMA behaved inertly in a murine model.No Level Assigned This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Asunto(s)
Cara , Polimetil Metacrilato , Humanos , Ratones , Animales , Polimetil Metacrilato/efectos adversos , Microesferas , Inflamación
3.
Aesthetic Plast Surg ; 47(3): 1205-1216, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36418549

RESUMEN

Polymethylmethacrylate (PMMA) is a filler used for aesthetic and/or repair purposes. The response to the implantation of biomaterials varies according to factors related to the patient, the professional responsible for the application and the material used. In vitro and in vivo experimental models have been used to study aspects such as the organism/biomaterial interface and the role of macrophages, dendritic cells and neutrophils. This study aimed to characterize the inflammatory reactions related to polymer concentration, implantation depth and exposure time. Different concentrations of PMMA were implanted in different anatomical planes in mice. The consequences of contact with PMMA, from structural changes to the inflammatory characteristic of tissue damage, were histologically evaluated. The implantation interfered in the morphological structure of the region where it was implanted, expanding it and due to the inflammatory reaction generated, by the presence of the vehicle in the initial phase and by the collagen produced in the chronic phase. The 30% concentration of PMMA induced a greater presence of foreign body giant cells both subcutaneously, at 7, 30 and 90 days after implantation (DAI), and intramuscular at 30DAI. Tissue remodeling was more expressive in the subcutaneous region with significant density of the extracellular matrix at 90DAI. In conclusion, the foreign body reaction resulting from the implantation process acquires different characteristics depending on the anatomical plane and the concentration of implanted product, where the more superficial the implantation plane, the greater the inflammatory reaction. Moreover, PMMA concentration and the depth of implantation did not influence the collagen production.No Level Assigned This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors https://www.springer.com/00266.


Asunto(s)
Materiales Biocompatibles , Polimetil Metacrilato , Ratones , Animales
4.
Eur J Pharm Biopharm ; 176: 180-187, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35640783

RESUMEN

Graphene and its derivatives are in the edge of technology with a wide and diverse range of applications. In the last years, especially graphene quantum dots (GQDs) have had their biomedical application expanded in scope, mainly focused on cancer therapy, drug delivery and imaging. Although many studies have evaluated the application of this nanomaterial in biomedical field, only a few studies aimed to understand their biological impact in human health. In this regard, here we evaluated the impact of high doses of GQDs on the microcirculation of a healthy animal model to better assess risks of its use in humans. Our data show that successive applications of GQDs cause irreversible damage to the microcirculation. After seven days, a complete destruction of the microcirculation has been observed. In addition, GQDs showed substantial activity in human erythrocytes. Our findings suggest that risks associated with the use of GQDs, as well as all graphene derivatives, must be better understood, especially concerning biomedical application. A greater understanding of how GQDs impact body circulation, including the context of environmental and engineered nanosystems, is of paramount importance.


Asunto(s)
Grafito , Nanoestructuras , Puntos Cuánticos , Animales , Microcirculación
5.
Microb Pathog ; 158: 105088, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34260904

RESUMEN

BACKGROUND: Cells of the innate immune system undergo long-term functional reprogramming in response to Bacillus Calmette-Guérin (BCG) exposure via a process called trained immunity, conferring nonspecific protection to unrelated infections. Here, we investigate whether BCG-induced trained immunity is able to protect against infections caused by different Leishmania spp., protozoa that cause cutaneous and mucosal or visceral lesions. METHODS: We used training models of human monocytes with BCG and subsequent infection by L. braziliensis, L. amazonensis and L. infantum, and the vaccination of wild-type and transgenic mice for IL-32γ before in vivo challenge with parasites. RESULTS: We demonstrated that monocytes trained with BCG presented enhanced ability to kill L. braziliensis, L. amazonensis and L. infantum through increased production of reactive oxygen species. Interleukin (IL)-32 appears to play an essential role in the development of trained immunity. Indeed, BCG exposure induced IL-32 production in human primary monocytes, both mRNA and protein. We have used a human IL-32γ transgenic mouse model (IL-32γTg) to study the effect of BCG vaccination in different Leishmania infection models. BCG vaccination decreased lesion size and parasite load in infections caused by L. braziliensis and reduced the spread of L. amazonensis to other organs in both infected wild-type (WT) and IL-32γTg mice. In addition, BCG reduced the parasite load in the spleen, liver and bone marrow of both WT and IL-32γTg mice infected with L. infantum. BCG vaccination increased inflammatory infiltrate in infected tissues caused by different Leishmania spp. In all infections, the presence of IL-32γ was not mandatory, but it increased the protective and inflammatory effects of BCG-induced training. CONCLUSIONS: BCG's ability to train innate immune cells, providing protection against leishmaniasis, as well as the participation of IL-32γ in this process, pave the way for new treatment strategies for this neglected infectious disease.


Asunto(s)
Vacuna BCG , Interleucinas/inmunología , Leishmania , Leishmaniasis , Mycobacterium bovis , Animales , Leishmaniasis/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos
6.
J Oncol ; 2019: 9827147, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31949431

RESUMEN

Galectin-3 (Gal-3) is a multifunctional ß-galactoside-binding lectin that once synthesized is expressed in the nucleus, cytoplasm, cell surface, and extracellular environment. Gal-3 plays an important role in breast cancer tumors due to its ability to promote interactions between cell-cell and cell-extracellular matrix (ECM) elements, increasing tumor survival and metastatic dissemination. Still, the mechanism by which Gal-3 interferes with tumor cell migration and metastasis formation is complex and not fully understood. Here, we showed that Gal-3 knockdown increased the migration ability of 4T1 murine breast cancer cells in vitro. Using the 4T1 orthotopic breast cancer spontaneous metastasis mouse model, we demonstrated that 4T1-derived tumors were significantly larger in the presence of Gal-3 (scramble) in comparison with Gal-3 knockdown 4T1-derived tumors. Nevertheless, Gal-3 knockdown 4T1 cells were outnumbered in the bone marrow in comparison with scramble 4T1 cells. Finally, we reported here a decrease in the content of cell-surface syndecan-1 and an increase in the levels of chondroitin sulfate proteoglycans such as versican in Gal-3 knockdown 4T1 cells both in vitro and in vivo. Overall, our findings establish that Gal-3 downregulation during breast cancer progression regulates cell-associated and tumor microenvironment glycosaminoglycans (GAGs)/proteoglycans (PG), thus enhancing the metastatic potential of tumor cells.

7.
Drug Deliv Transl Res ; 9(1): 97-105, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30178280

RESUMEN

In this study, we developed, characterized, and tested in vivo polymeric nanoparticle of ethambutol labeled with 99mTc as nanoradiopharmaceutical for early diagnosis of tuberculosis by single-photon emission computed tomography, also as a therapeutic choice. Nanoparticles were developed by double emulsification. All characterization tests were performed, as scanning electron microscopy and dynamic light scattering. The labeling process with 99mTc was performed using the direct labeling process. In vitro and in vivo assays were performed with animals and cells. The results showed that a spherical ethambutol nanoparticle with a size range of 280-300 nm was obtained. The stability test showed that the nanoparticles were well labeled with 99mTc (> 99.1%) and keep labeled over 24 h. The biodistribution assay showed that almost 18% of the nanoparticles were uptake by the lung in infected mice (male C57Bl/6) with Mycobacterium bovis BCG (4 × 105 CFU/cavity), corroborating its use as a nanodrug for tuberculosis imaging. The results for the cell assay corroborate its therapeutical effect. We developed and efficiently tested a new nanodrug that can be used for both imaging and therapy of tuberculosis, acting as a novel nanotheranostic.


Asunto(s)
Antituberculosos/administración & dosificación , Etambutol/administración & dosificación , Radiofármacos/química , Tecnecio/química , Tuberculosis/diagnóstico por imagen , Tuberculosis/tratamiento farmacológico , Animales , Antituberculosos/química , Antituberculosos/farmacocinética , Dispersión Dinámica de Luz , Etambutol/química , Etambutol/farmacocinética , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Rastreo , Mycobacterium bovis/efectos de los fármacos , Mycobacterium bovis/patogenicidad , Nanopartículas , Tamaño de la Partícula , Polímeros , Radiofármacos/farmacocinética , Tecnecio/farmacocinética , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único , Tuberculosis/veterinaria
8.
Sci Rep ; 8(1): 3495, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29472568

RESUMEN

Galectin-3 (Gal-3) is a ß-galactoside binding protein that controls cell-cell and cell-extracellular matrix interactions. In lymphoid organs, gal-3 inhibits B cell differentiation by mechanisms poorly understood. The B cell development is dependent on tissue organization and stromal cell signaling, including IL-7 and Notch pathways. Here, we investigate possible mechanisms that gal-3 interferes during B lymphocyte differentiation in the bone marrow (BM) and spleen. The BM of gal-3-deficient mice (Lgals3-/- mice) was evidenced by elevated numbers of B220+CD19+c-Kit+IL-7R+ progenitor B cells. In parallel, CD45- bone marrow stromal cells expressed high levels of mRNA IL-7, Notch ligands (Jagged-1 and Delta-like 4), and transcription factors (Hes-1, Hey-1, Hey-2 and Hey-L). The spleen of Lgals3-/- mice was hallmarked by marginal zone disorganization, high number of IgM+IgD+ B cells and CD138+ plasma cells, overexpression of Notch ligands (Jagged-1, Delta-like 1 and Delta-like 4) by stromal cells and Hey-1. Morever, IgM+IgD+ B cells and B220+CD138+ CXCR4+ plasmablasts were significantly increased in the BM and blood of Lgals3-/- mice. For the first time, we demonstrated that gal-3 inhibits Notch signaling activation in lymphoid organs regulating earlier and terminal events of B cell differentiation.


Asunto(s)
Diferenciación Celular/genética , Galectina 3/genética , Células Secretoras de Insulina/metabolismo , Receptores Notch/genética , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Regulación de la Expresión Génica/genética , Células Secretoras de Insulina/citología , Interleucina-7/genética , Ligandos , Ratones , Transducción de Señal/genética , Bazo/crecimiento & desarrollo , Bazo/metabolismo , Células del Estroma/citología , Células del Estroma/metabolismo , Estructuras Linfoides Terciarias/genética , Factores de Transcripción/genética
9.
Stem Cell Res Ther ; 9(1): 30, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29402309

RESUMEN

BACKGROUND: Doxorubicin (Dox) is a chemotherapy drug with limited application due to cardiotoxicity that may progress to heart failure. This study aims to evaluate the role of cardiomyocytes derived from mouse embryonic stem cells (CM-mESCs) in the treatment of Dox-induced cardiomyopathy (DIC) in mice. METHODS: The mouse embryonic stem cell (mESC) line E14TG2A was characterized by karyotype analysis, gene expression using RT-PCR and immunofluorescence. Cells were transduced with luciferase 2 and submitted to cardiac differentiation. Total conditioned medium (TCM) from the CM-mESCs was collected for proteomic analysis. To establish DIC in CD1 mice, Dox (7.5 mg/kg) was administered once a week for 3 weeks, resulting in a cumulative Dox dose of 22.5 mg/kg. At the fourth week, a group of animals was injected intramyocardially with CM-mESCs (8 × 105 cells). Cells were tracked by a bioluminescence assay, and the body weight, echocardiogram, electrocardiogram and number of apoptotic cardiomyocytes were evaluated. RESULTS: mESCs exhibited a normal karyotype and expressed pluripotent markers. Proteomic analysis of TCM showed proteins related to the negative regulation of cell death. CM-mESCs presented ventricular action potential characteristics. Mice that received Dox developed heart failure and showed significant differences in body weight, ejection fraction (EF), end-systolic volume (ESV), stroke volume (SV), heart rate and QT and corrected QT (QTc) intervals when compared to the control group. After cell or placebo injection, the Dox + CM-mESC group showed significant increases in EF and SV when compared to the Dox + placebo group. Reduction in ESV and QT and QTc intervals in Dox + CM-mESC-treated mice was observed at 5 or 30 days after cell treatment. Cells were detected up to 11 days after injection. The Dox + CM-mESC group showed a significant reduction in the percentage of apoptotic cardiomyocytes in the hearts of mice when compared to the Dox + placebo group. CONCLUSIONS: CM-mESC transplantation improves cardiac function in mice with DIC.


Asunto(s)
Cardiomiopatías/terapia , Doxorrubicina/efectos adversos , Células Madre Embrionarias Humanas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/trasplante , Cardiomiopatías/inducido químicamente , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Línea Celular , Doxorrubicina/uso terapéutico , Células Madre Embrionarias Humanas/patología , Humanos , Células Madre Pluripotentes Inducidas/patología , Miocitos Cardíacos/patología
10.
Oncotarget ; 8(30): 49484-49501, 2017 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-28533486

RESUMEN

Angiogenesis is a coordinated process tightly regulated by the balance between Delta-like-4 (DLL4) and Jagged-1 (JAG1) in endothelial cells. Here we show that galectin-3 (gal-3), a glycan-binding protein secreted by cancer cells under hypoxic conditions, triggers sprouting angiogenesis, assisted by hypoxic changes in the glycosylation status of endothelial cells that enhance binding to gal-3. Galectin-3's proangiogenic functions were found to be predominantly dependent on the Notch ligand JAG1. Differential direct binding to JAG1 was shown by surface plasmon resonance assay. Upon binding to Notch ligands, gal-3 preferentially increased JAG1 protein half-life over DLL4 and preferentially activated JAG1/Notch-1 signaling in endothelial cells. JAG1 overexpression in Lewis lung carcinoma cells accelerated tumor growth in vivo, but this effect was prevented in Lgals3-/- mice. Our findings establish gal-3 as a molecular regulator of the JAG1/Notch-1 signaling pathway and have direct implications for the development of strategies aimed at controlling tumor angiogenesis.


Asunto(s)
Galectina 3/metabolismo , Proteína Jagged-1/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Neovascularización Patológica/metabolismo , Receptores Notch/metabolismo , Animales , Proteínas Sanguíneas , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Galectina 3/genética , Galectinas , Humanos , Hipoxia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ligandos , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Modelos Biológicos , Neoplasias/genética , Neovascularización Patológica/genética , Unión Proteica , Transducción de Señal
11.
Artículo en Inglés | MEDLINE | ID: mdl-28260937

RESUMEN

BACKGROUND: The adipocytolytic non-surgical esthetic procedures are indicated for the reduction of localized fat and are effective in reducing local adiposity through the ablation of adipocytes with fast and lasting results, besides causing local inflammation. OBJECTIVE: This study aimed to characterize the adipocytolytic procedures and correlate the phases of the inflammatory process with the results obtained from such procedures, in order to clarify the role of inflammation triggered by the adipocytolytic procedures and its relation with the lipolytic process, with a focus on body shaping. METHODS: This work is an integrative literature review that presents a total of 72 articles published between 1998 and 2015, derived from the PubMed database, in order to establish a relationship between clinical and basic science research, assuming an important role in medical practice based on evidence. RESULTS: The results show that the adipocytolytic procedures are characterized by triggering inflammation arising from the disruption of adipocytes by interfering with the lipolytic signaling pathways in both acute and chronic phases of inflammation through the direct action of proinflammatory cytokines or catecholamines. Therefore, inflammation plays an important role in modulating the lipolytic process, influencing body shaping. CONCLUSION: The inflammatory process assists the adipolytic process in all stages of inflammation, contributing to the reduction of body contouring.

12.
PLoS Negl Trop Dis ; 11(2): e0005137, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28231240

RESUMEN

Schistosomiasis affects approximately 240 million people in the world. Schistosoma mansoni eggs in the liver induce periportal fibrosis and hepatic failure driven by monocyte recruitment and macrophage activation, resulting in robust Th2 response. Here, we suggested a possible involvement of Galectin-3 (Gal-3), histone deacetylases (HDACs), and Hedgehog (Hh) signaling with macrophage activation during Th1/Th2 immune responses, fibrogranuloma reaction, and tissue repair during schistosomiasis. Gal-3 is highly expressed by liver macrophages (Kupffer cells) around Schistosoma eggs. HDACs and Hh regulate macrophage polarization and hepatic stellate cell activation during schistosomiasis-associated fibrogenesis. Previously, we demonstrated an abnormal extracellular matrix distribution in the liver that correlated with atypical monocyte-macrophage differentiation in S. mansoni-infected, Gal-3-deficient (Lgals3-/-) mice. New findings explored in this review focus on the chronic phase, when wild-type (Lgals3+/+) and Lgals3-/- mice were analyzed 90 days after cercariae infection. In Lgals3-/- infected mice, there was significant inflammatory infiltration with myeloid cells associated with egg destruction (hematoxylin and eosin staining), phagocytes (specifically Kupffer cells), numerically reduced and diffuse matrix extracellular deposition in fibrotic areas (Gomori trichrome staining), and severe disorganization of collagen fibers surrounding the S. mansoni eggs (reticulin staining). Granuloma-derived stromal cells (GR cells) of Lgals3-/- infected mice expressed lower levels of alpha smooth muscle actin (α-SMA) and eotaxin and higher levels of IL-4 than Lgals3+/+ mice (real-time PCR). The relevant participation of macrophages in these events led us to suggest distinct mechanisms of activation that culminate in defective fibrosis in the liver of Lgals3-/- infected mice. These aspects were discussed in this review, as well as the possible interference between Gal-3, HDACs, and Hh signaling during progressive liver fibrosis in S. mansoni-infected mice. Further studies focused on macrophage roles could elucidate these questions and clear the potential utility of these molecules as antifibrotic targets.


Asunto(s)
Galectina 3/metabolismo , Erizos/metabolismo , Histona Desacetilasas/metabolismo , Cirrosis Hepática/metabolismo , Esquistosomiasis/complicaciones , Animales , Galectina 3/genética , Erizos/genética , Histona Desacetilasas/genética , Humanos , Cirrosis Hepática/etiología , Cirrosis Hepática/genética , Esquistosomiasis/parasitología , Esquistosomiasis Japónica/parasitología , Transducción de Señal
13.
BMC Cancer ; 16: 636, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27526676

RESUMEN

BACKGROUND: Galectin-3 is a multifunctional ß-galactoside-binding lectin that once synthesized, is expressed in the nucleus, cytoplasm, cell surface and in the extracellular environment. Because of its unique structure, galectin-3 can oligomerize forming lattice upon binding to multivalent oligossacharides and influence several pathologic events such as tumorigenesis, invasion and metastasis. METHODS: In our study, balb/c Lgals3+/+ and Lgals3-/- female mice were inoculated in the fourth mammary fat pad with 4T1 breast cancer cell line. The primary tumor, inguinal lymph nodes and iliac bone marrow were evaluated 15, 21 and 28 days post-injection. The primary tumor growth was evaluated by measuring the external diameter, internal growth by ultrasound and weight of the excised tumor. The presence of cancer cells in the draining lymph nodes and iliac crest bone marrow were performed by immunohistochemistry, PCR and clonogenic metastatic assay. RESULTS: In this study we demonstrated that the deletion of galectin-3 in the host affected drastically the in vivo growth rate of 4T1 tumors. The primary tumors in Lgals3-/- mice displayed a higher proliferative rate (p < 0,05), an increased necrotic area (p < 0,01) and new blood vessels with a wider lumen in comparison with tumors from Lgals3+/+ mice (P < 0,05). Moreover, we detected a higher number of 4T1-derived metastatic colonies in the lymph nodes and the bone marrow of Lgals3-/- mice (p < 0,05). Additionally, healthy Lgals3-/- control mice presented an altered spatial distribution of CXCL12 in the bone marrow, which may explain at least in part the initial colonization of this organ in Lgals3-/- injected with 4T1 cells. CONCLUSIONS: Taken together, our results demonstrate for the first time that the absence of galectin-3 in the host microenvironment favors the growth of the primary tumors, the metastatic spread to the inguinal lymph nodes and bone marrow colonization by metastatic 4T1 tumor cells.


Asunto(s)
Neoplasias de la Médula Ósea/patología , Neoplasias de la Médula Ósea/secundario , Neoplasias de la Mama/patología , Galectina 3/deficiencia , Animales , Neoplasias de la Médula Ósea/genética , Neoplasias de la Mama/genética , Línea Celular Tumoral , Proliferación Celular , Femenino , Galectina 3/genética , Ganglios Linfáticos , Ratones Endogámicos BALB C , Trasplante de Neoplasias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...