Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Bacteriol ; 204(5): e0062421, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35446118

RESUMEN

The genus Xanthomonas includes more than 30 phytopathogenic species that infect a wide range of plants and cause severe diseases that greatly impact crop productivity. These bacteria are highly adapted to the soil and plant environment, being found in decaying material, as epiphytes, and colonizing the plant mesophyll. Signal transduction mechanisms involved in the responses of Xanthomonas to environmental changes are still poorly characterized. Xanthomonad genomes typically encode several representatives of the extracytoplasmic function σ (σECF) factors, whose physiological roles remain elusive. In this work, we functionally characterized the Xanthomonas citri pv. citri EcfL, a σECF factor homologous to members of the iron-responsive FecI-like group. We show that EcfL is not required or induced during iron starvation, despite presenting the common features of other FecI-like σECF factors. EcfL positively regulates one operon composed of three genes that encode a TonB-dependent receptor involved in cell surface signaling, an acid phosphatase, and a lectin-domain containing protein. Furthermore, we demonstrate that EcfL is required for full virulence in citrus, and its regulon is induced inside the plant mesophyll and in response to acid stress. Together, our study suggests a role for EcfL in the adaptation of X. citri to the plant environment, in this way contributing to its ability to cause citrus canker disease. IMPORTANCE The Xanthomonas genus comprises a large number of phytopathogenic species that infect a wide variety of economically important plants worldwide. Bacterial adaptation to the plant and soil environment relies on their repertoire of signal transduction pathways, including alternative sigma factors of the extracytoplasmic function family (σECF). Here, we describe a new σECF factor found in several Xanthomonas species, demonstrating its role in Xanthomonas citri virulence to citrus plants. We show that EcfL regulates a single operon containing three genes, which are also conserved in other Xanthomonas species. This study further expands our knowledge on the functions of the widespread family of σECF factors in phytopathogenic bacteria.


Asunto(s)
Citrus , Xanthomonas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Citrus/microbiología , Hierro/metabolismo , Enfermedades de las Plantas/microbiología , Factor sigma/genética , Factor sigma/metabolismo , Suelo , Virulencia/genética , Xanthomonas/metabolismo
2.
Asian Pac J Trop Med ; 9(7): 652-7, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27393092

RESUMEN

OBJECTIVE: To evaluate whether hypoxia inducible factor (HIF-1α) targeting pharmacological drugs, echinomycin, resveratrol and CdCl2 which inhibit HIF-1α stimulation, and mimosine, which enhances the stability of HIF-1α present antileishmanial properties. METHODS: The leishmanicidal effect of drugs was evaluated in mouse macrophages and Balb/c mouse model for cutaneous leishmaniosis. RESULTS: Resveratrol and CdCl2 reduced the parasite load [IC50, (27.3 ± 2.25) µM and (24.8 ± 0.95) µM, respectively]. The IC50 value of echinomycin was (22.7 ± 7.36) nM and mimosine did not alter the parasite load in primary macrophages. The macrophage viability IC50 values for resveratrol, echinomycin and CdCl2 and mimosine were >40 µM, >100 nM, >200 µM and>2000 µM, respectively. In vivo no differences between cutaneous lesions from control, resveratrol- and echinomycin-treated Balb/c mice were detected. CONCLUSIONS: Resveratrol, echinomycin and CdCl2 reduce parasite survival in vitro. The HIF-1α targeting pharmacological drugs require further study to more fully determine their anti-Leishmania potential and their role in therapeutic strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...