Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Aquat Toxicol ; 271: 106906, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38588636

RESUMEN

Butylone (BTL) is a chiral synthetic cathinone available as a racemate and reported as contaminant in wastewater effluents. However, there are no studies on its impact on ecosystems and possible enantioselectivity in ecotoxicity. This work aimed to evaluate: (i) the possible ecotoxicity of BTL as racemate or its isolated (R)- and (S)- enantiomers using Daphnia magna; and (ii) the efficiency of advanced oxidation technologies (AOTs) in the removal of BTL and reduction of toxic effects caused by wastewaters. Enantiomers of BTL were obtained by liquid chromatography (LC) using a chiral semi-preparative column. Enantiomeric purity of each enantiomer was > 97 %. For toxicity assessment, a 9-day sub-chronic assay was performed with the racemate (at 0.10, 1.0 or 10 µg L-1) or each enantiomer (at 0.10 or 1.0 µg L-1). Changes in morphophysiological, behavioural, biochemical and reproductive endpoints were observed, which were dependent on the form of the substance and life stage of the organism (juvenile or adult). Removal rates of BTL in spiked wastewater (10 µg L-1) treated with different AOTs (ultraviolet, UV; ozonation, O3; and UV/O3) were similar and lower than 29 %. The 48 h D. magna acute toxicity assays demonstrated a reduction in the toxicity of the treated spiked effluents, but no differences were found amongst AOTs treatments. These results warn for the contamination and negative impact of BTL on ecosystems and highlight the need for efficient removal processes.

2.
Nanoscale ; 15(46): 18592-18602, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37960972

RESUMEN

To boost efficient energy transitions, alternatives to expensive and unsustainable noble metal-based electrocatalysts for the oxygen reduction reaction (ORR) are needed. Having this in mind, carbon black - Black Pearls 2000 (BP) was enriched in active nitrogen-containing centers, including single-atom Fe-N sites surrounded by Fe nanoclusters, through a synthesis methodology employing only broadly available precursors. The methodical approach taken to optimize the synthesis conditions highlighted the importance of (1) a proper choice of the Fe precursor; (2) melamine as an N source to limit the formation of magnetite crystals and modulate the charge density nearby the active sites, and glucose to chelate/isolate Fe atoms and thus allow the Fe-N coordination to be established, with a limiting formation of Fe0 clusters; and (3) a careful dosing of the Fe load. The ORR on the optimized electrocatalyst (Fe0.06-N@BP) proceeds mostly through a four-electron pathway, having an onset potential (0.912 V vs. RHE) and limiting current density (4.757 mA cm-2) above those measured on Pt/C (0.882 V and 4.657 mA cm-2, respectively). Moreover, the current density yielded by Fe0.06-N@BP after 24 h at 0.4 V vs. RHE was still above that of Pt/C at t = 0 (4.44 mA cm-2), making it a promising alternative to noble metal-containing electrocatalysts in fuel cells.

3.
J Environ Manage ; 348: 119314, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37857217

RESUMEN

Over the past years, there has been an increasing concern about the occurrence of antineoplastic drugs in water bodies. The incomplete removal of these pharmaceuticals from wastewaters has been confirmed by several scientists, making it urgent to find a reliable technique or a combination of techniques capable to produce clean and safe water. In this work, the combination of nanofiltration and ozone (O3)-based processes (NF + O3, NF + O3/H2O2 and NF + O3/H2O2/UVA) was studied aiming to produce clean water from wastewater treatment plant (WWTP) secondary effluents to be safely discharged into water bodies, reused in daily practices such as aquaculture activities or for recharging aquifers used as abstraction sources for drinking water production. Nanofiltration was performed in a pilot-scale unit and O3-based processes in a continuous-flow column. The peroxone process (O3/H2O2) was considered the most promising technology to be coupled to nanofiltration, all the target pharmaceuticals being removed at an extent higher than 98% from WWTP secondary effluents, with a DOC reduction up to 92%. The applicability of the clean water stream for recharging aquifers used as abstraction sources for drinking water production was supported by a risk assessment approach, regarding the final concentrations of the target pharmaceuticals. Moreover, the toxicity of the nanofiltration retentate, a polluted stream generated from the nanofiltration system, was greatly decreased after the application of the peroxone process, which evidences the positive impact on the environment of implementing a NF + O3/H2O2 process.


Asunto(s)
Antineoplásicos , Agua Potable , Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Aguas Residuales , Peróxido de Hidrógeno , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Preparaciones Farmacéuticas , Oxidación-Reducción
4.
J Hazard Mater Adv ; 10: 100315, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37193121

RESUMEN

The COVID-19 pandemic caused by the SARS-CoV-2 virus led to changes in the lifestyle and human behaviour, which resulted in different consumption patterns of some classes of pharmaceuticals including curative, symptom-relieving, and psychotropic drugs. The trends in the consumption of these compounds are related to their concentrations in wastewater systems, since incompletely metabolised drugs (or their metabolites back transformed into the parental form) may be detected and quantified by analytical methods. Pharmaceuticals are highly recalcitrant compounds and conventional activated sludge processes implemented in wastewater treatment plants (WWTP) are ineffective at degrading these substances. As a results, these compounds end up in waterways or accumulate in the sludge, being a serious concern given their potential effects on ecosystems and public health. Therefore, it is crucial to evaluate the presence of pharmaceuticals in water and sludge to assist in the search for more effective processes. In this work, eight pharmaceuticals from five therapeutic classes were analysed in wastewater and sludge samples collected in two WWTP located in the Northern Portugal, during the third COVID-19 epidemic wave in Portugal. The two WWTP demonstrated a similar pattern with respect to the concentration levels in that period. However, the drugs loads reaching each WWTP were dissimilar when normalising the concentrations to the inlet flow rate. Acetaminophen (ACET) was the compound detected at highest concentrations in aqueous samples of both WWTP (98. 516 µg L - 1 in WWTP2 and 123. 506 µg L - 1in WWTP1), indicating that this drug is extensively used without the need of a prescription, known of general public knowledge as an antipyretic and analgesic agent to treat pain and fever. The concentrations determined in the sludge samples were below 1.65 µg g - 1 in both WWTP, the highest value being found for azithromycin (AZT). This result may be justified by the physico-chemical characteristics of the compound that favour its adsorption to the sludge surface through ionic interactions. It was not possible to establish a clear relationship between the incidence of COVID-19 cases in the sewer catchment and the concentration of drugs detected in the same period. However, looking at the data obtained, the high incidence of COVID-19 in January 2021 is in line with the high concentration of drugs detected in the aqueous and sludge samples but prediction of drug load from viral load data was unfeasible.

5.
Molecules ; 28(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36770878

RESUMEN

Eighteen per-and polyfluoroalkyl substances (PFASs) were investigated in surface waters of four river basins in Portugal (Ave, Leça, Antuã, and Cértima) during the dry and wet seasons. All sampling sites showed contamination in at least one of the seasons. In the dry season, perfluorooctanoate acid (PFOA) and perfluoro-octane sulfonate (PFOS), were the most frequent PFASs, while during the wet season these were PFOA and perfluobutane-sulfonic acid (PFBS). Compounds detected at higher concentrations were PFOS (22.6 ng L-1) and perfluoro-butanoic acid (PFBA) (22.6 ng L-1) in the dry and wet seasons, respectively. Moreover, the prospective environmental risks of PFASs, detected at higher concentrations, were evaluated based on the Risk Quotient (RQ) classification, which comprises acute and chronic toxicity. The results show that the RQ values of eight out of the nine PFASs were below 0.01, indicating low risk to organisms at different trophic levels in the four rivers in both seasons, wet and dry. Nevertheless, in the specific case of perfluoro-tetradecanoic acid (PFTeA), the RQ values calculated exceeded 1 for fish (96 h) and daphnids (48 h), indicating a high risk for these organisms. Furthermore, the RQ values were higher than 0.1, indicating a medium risk for fish, daphnids and green algae (96 h).


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Animales , Ríos , Ácidos Alcanesulfónicos/análisis , Portugal , Estudios Prospectivos , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Fluorocarburos/análisis , Alcanosulfonatos , Peces
6.
Environ Technol ; 44(25): 3834-3849, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35510899

RESUMEN

The last few years have seen great leaps in the use of mechano-chemically modified carbon nanotubes in catalysis. While high improvements in catalytic performance have been achieved, the nature of the technique is not compatible with typical strategies for CNT coating of macro-structured catalysts by chemical vapour deposition. Developing macro-structured catalysts is a key step towards the sustainability of multi-phase catalysis and requires a methodology for coating with mechano-chemical modified CNT metallic catalysts. Preparing water-based slurries is not straightforward due to the CNT's hydrophobicity, and the use of organic solvents is unsustainable. A novel methodology for the washcoating of macro-structures with pre-modified monometallic CNT catalysts was assessed. A compromise between surfactant use, post-coating treatment, and the catalyst activity/integrity, was achieved by solubilization of the surfactant in a isopropanol:acetone mixture. The activity of the prepared catalysts was affected by the metallic dispersion, surfactant coverage, and distribution of the palladium throughout the catalytic layer. Palladium centres in the bottommost layers were found to be unavailable for liquid phase reaction. The activity of the catalysts prepared with pre-formed carbon monometallic powders was improved by adopting a coating strategy to maximize the availability of the metallic particles near the surface of the catalytic layer.


Asunto(s)
Nanotubos de Carbono , Bromatos , Paladio/química , Catálisis , Tensoactivos
7.
Environ Technol ; : 1-19, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36469607

RESUMEN

The presence of heavy metals and/or harmful bacteria in drinking water represents significant risks to human health. This study aimed to develop a low-cost water treatment technology using synthesized nanocomposites with metal nanoparticles supported on activated carbon (AC) for bacteria and heavy metal removal. In addition, the performance of the developed nanomaterials was compared with that of commercial materials - carbon fibers of three different typologies. The chemical and textural properties of all tested materials were characterized. To simulate a technology to be applied in a water outlet point, removal tests were carried out in a continuous system using suspensions of Escherichia coli and/or Staphylococcus aureus, wherein the contact time with the two phases was minimal (1 min). The obtained results revealed that iron and copper oxides supported on AC with a calcination treatment (CuFeO/AC-C) was the nanocomposite with the best performance, achieving a 6 log reduction for both bacteria in the same suspension up to 9 h operation. A mix of bacteria and heavy metals, simulating a real water, was treated with CuFeO/AC-C obtaining a 6 log reduction of bacteria, a Pb2+ removal >99.9% and Cd2+ removal between 97 and 98% over 180 passage times.

8.
Nanomaterials (Basel) ; 12(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36234402

RESUMEN

A novel approach for the treatment of volatile organic compounds from gaseous streams was developed. In order to accomplish this, a semi-batch bubble reactor was used, aiming to assess the toluene (selected as model compound) degradation from gaseous streams via heterogeneous Fenton oxidation. Activated carbon-based catalysts-metal-free or iron-impregnated-with different textural and chemical surface properties were used for the first time as catalysts, in order to degrade gaseous toluene using such technology. Complementary characterization techniques, such as nitrogen adsorption at -196 °C, elemental analysis, pH at the point of zero charge (pHPZC), inductively coupled plasma optical emission spectrometry (ICP-OES) and transmission electron microscopy (TEM), were used. The materials' chemical surface properties, particularly the presence of N-surface groups, were herein found to play an important role in toluene adsorption and catalytic performance. The maximum amount of toluene transferred, 6.39 × 10-3 mol, was achieved using melamine-doped activated carbon (N-doped material) that was impregnated with iron (sample herein called ACM-Fe). This iron-based catalyst was found to be quite stable during three reutilization cycles.

9.
J Environ Manage ; 322: 116084, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36067669

RESUMEN

The degradation of toluene from a gas stream by the heterogeneous Fenton process was evaluated over a carbon-coated monolith impregnated or not with iron as catalyst in a bubble column reactor (BCR). The carbon-coated monolith support (CM) was prepared by chemical vapor deposition and the catalyst (CM impregnated with iron - herein called CM-Fe) by adsorption. In the screening of processes (absorption, adsorption and reaction), it was shown that the heterogeneous Fenton process catalyzed by CM-Fe presents the best efficiency (toluene transfer (η) = 10 × 10-3 mol, for 300 mL of liquid solution and 0.69 g of catalyst). Finally, the stability of CM and CM-Fe was evaluated, wherein ten consecutive runs were carried out, the results showing a considerable deactivation of CM during the first five cycles. In contrast, the CM-Fe sample only slightly decreases its activity from the 1st to 2nd cycle (due to a small amount of iron leached from the monolith, 0.7%), remaining stable after that, which is important for applying this technology at the industrial level. This work showed for the first time that the treatment of gaseous effluents containing organic compounds by the Fenton process (which takes place in the liquid phase) using a carbon-coated monolith impregnated with iron is plausible, so the proof of concept was successfully accomplished.


Asunto(s)
Carbono , Hierro , Carbono/química , Catálisis , Gases , Peróxido de Hidrógeno/química , Hierro/química , Oxidación-Reducción , Tolueno/química
10.
J Hazard Mater ; 440: 129743, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35963086

RESUMEN

Over the past decade there has been an increasing concern on the presence of cytostatics (also known as anticancer drugs) in natural waterbodies. The conventional wastewater treatments seem not to be effective enough to remove them, and therefore new processes must be considered. This work investigates the performance of ozonation (O3), catalytic ozonation (O3/Fe2+) and peroxone (O3/H2O2) processes, under dark or UV radiation conditions, for the degradation of cytostatics of worldwide concern. The degradation of bicalutamide (a representative of recalcitrant cytostatics) was firstly assessed in batch and then in a tubular column reactor (continuous flow mode runs) using a wastewater treatment plant (WWTP) secondary effluent. Bicalutamide removal ranged between 66 % (O3) and 98 % (O3/H2O2/UV) in continuous flow mode runs, the peroxone process being the most effective. The performance of these processes was then assessed against a mixture of twelve cytostatics of worldwide concern spiked in the WWTP effluent (25-350 ng/L). After treatment, seven cytostatics were completely removed, whereas the five most recalcitrant ones were eliminated to an extent of 8-92 % in O3/H2O2, and 44-95 % in O3/H2O2/UV. Phytotoxicity tests revealed a noticeable reduction in the effluent toxicity, demonstrating the feasibility of these processes in realistic conditions as tertiary treatment.


Asunto(s)
Citostáticos , Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Anilidas , Peróxido de Hidrógeno , Nitrilos , Oxidación-Reducción , Compuestos de Tosilo , Aguas Residuales , Agua , Contaminantes Químicos del Agua/análisis
11.
Sci Total Environ ; 850: 158073, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-35981591

RESUMEN

Microplastics have been investigated over the last decade as potential transport vectors for other pollutants. However, the specific role of plastic aging, in which plastics change their characteristics over time when exposed to environmental agents, has been overlooked. Therefore, sorption experiments were herein conducted using virgin and aged (by ozone treatment or rooftop weathering) microplastic particles of LDPE - low-density polyethylene, PET - poly(ethylene terephthalate), or uPVC - unplasticized poly(vinyl chloride). The organic micropollutants (OMPs) selected as sorbates comprise a diversified group of priority substances and contaminants of emerging concern, including pharmaceutical substances (florfenicol, trimethoprim, diclofenac, tramadol, citalopram, venlafaxine) and pesticides (alachlor, clofibric acid, diuron, pentachlorophenol), analyzed at trace concentrations (each ≤100 µg L-1). Sorption kinetics and equilibrium isotherms were obtained, as well as the confirmation that the aging degree of microplastics plays a major role in their sorption capacities. The results show an increased sorption of several OMPs on aged microplastics when compared to pristine samples, i.e. the sorption capacity increasing from one or two sorbed substances (maximum 3 µg g-1 per sorbate) up to nine after aging (maximum 10 µg g-1 per sorbate). The extent of sorption depends on the OMP, polymer and the effectiveness of the aging treatment. The modifications (e.g. in the chemical structure) between virgin and aged microplastics were linked to the increased sorption capacity of certain OMPs, allowing to better understand the different affinities observed. Additionally, phytotoxicity tests were performed to evaluate the mobility of the OMPs sorbed on the microplastics and the potential effects (on germination and early growth) of the combo on two species of plants (Lepidium sativum and Sinapis alba). These tests suggest low or no phytotoxicity effect under the conditions tested but indicate a need for further research on the behavior of microplastics on soil-plant systems.


Asunto(s)
Contaminantes Ambientales , Ozono , Pentaclorofenol , Plaguicidas , Tramadol , Cloruro de Vinilo , Contaminantes Químicos del Agua , Adsorción , Citalopram , Ácido Clofíbrico , Diclofenaco , Diurona , Etilenos , Microplásticos , Preparaciones Farmacéuticas , Plásticos/química , Polietileno , Polímeros , Suelo , Trimetoprim , Clorhidrato de Venlafaxina , Contaminantes Químicos del Agua/análisis
12.
Water Res ; 218: 118497, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35537252

RESUMEN

Antibiotics are often applied in aquaculture to prevent fish diseases. These substances can cause disturbances on receiving waters, when not properly eliminated from the aquaculture effluents. In this work, ozone (O3) was investigated as a possible oxidizing agent to remove fishery antibiotics from aquaculture effluents: florfenicol (FF), oxytetracycline (OTC), sulfadimethoxine (SDM), sulfamethoxazole (SMX), and trimethoprim (TMP). Batch experiments were performed using ultrapure water and aquaculture effluents spiked with a mixture of target antibiotics at relatively high concentrations (10 mg L-1 each). OTC, SMX and TMP were fully removed (< 30 min) regardless of the tested conditions, mainly by O3 direct attack. In contrast, FF was partially removed in 30 min (∼ 10 and 60%, in aquaculture effluents and ultrapure water, respectively), but only in the presence of hydroxyl radicals (HO•), the FF concentrations reaching levels below the detection limits in ultrapure water after 60 min. In the case of SDM, its degradation was highly influenced by the selected water matrix, but with removals always higher than 68%. In continuous-flow experiments applying more environmentally relevant antibiotic concentrations (100 ng L-1 each) and low O3 doses (1.5 mg L-1), ozonation highly removed (> 98%) all tested antibiotics from aquaculture effluents with a hydraulic retention time (HRT) of 10 min, except FF (68%). Although by-products were detected in treated samples, zebrafish (Danio rerio) embryotoxicity tests did not show a toxicity increase by applying this ozonation treatment. Ozonation is thus a possible solution to remove antibiotics from aquaculture effluents. Still, full-scale studies in aquaculture farms are needed, and generation of HO• may be favoured to readily oxidize the FF antibiotic.


Asunto(s)
Antibacterianos , Acuicultura , Contaminantes Químicos del Agua , Purificación del Agua , Animales , Antibacterianos/toxicidad , Oxitetraciclina/toxicidad , Ozono/química , Sulfadimetoxina/toxicidad , Sulfametoxazol/toxicidad , Trimetoprim/toxicidad , Contaminantes Químicos del Agua/toxicidad , Purificación del Agua/métodos , Pez Cebra
13.
Environ Res ; 204(Pt A): 111955, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34454936

RESUMEN

Aquaculture is the fastest growing animal food-producing sector. Water is the central resource for aquaculture, and it is essential that its quality be preserved. Micropollutants (MPs) can reach aquaculture through anthropogenic addition or inlet water, and may cause harmful effects such as endocrine disruption and antibiotic resistance, adversely affecting the fish species being farmed. Furthermore, the discharge of aquaculture effluents into the environment may contribute to the deterioration of water courses. In this sense, the implementation of environmentally responsible measures in aquaculture farms is imperative for the protection of ecosystems and human health. The European Commission (EC) has recently launched a guiding document promoting ecological aquaculture practices; however, options for water treatment are still lacking. Conventional processes are not designed to deal with MPs; this review article consolidates relevant information on the application of advanced oxidation technologies (AOTs) and constructed wetlands (CWs) as potential strategies in this regard. Although 161 studies on the application of AOTs or CWs in aquaculture have already been published, only 34 focused on MPs (28 on AOTs and 6 on CWs), whereas the others reported the removal of contaminants such as bacteria, organic matter, solids and inorganic ions. No study coupling both treatments has been reported to date for the removal of MPs from aquaculture waters. AOTs and CWs are prospective alternatives for the treatment of aquacultural aqueous matrices. However, the type of aquaculture activity and the specifications of these available technologies should be considered while selecting the most suitable treatment option.


Asunto(s)
Contaminantes Químicos del Agua , Humedales , Animales , Acuicultura , Ecosistema , Humanos , Estudios Prospectivos , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua/análisis
14.
Sci Total Environ ; 808: 152050, 2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-34856274

RESUMEN

The quality of water bodies has been decreasing over time. Urban wastewater treatment plants (UWWTPs) are key players to avoid that potentially toxic micropollutants reach the environment, and advanced treatment processes are being applied to address this issue. However, several variables have to be taken into account, particularly environmental sustainability. The aim of this study is to assess the life cycle impacts of combining UVC with different oxidants - hydrogen peroxide (H2O2), peroxymonosulfate (PMS) and persulfate (PS) -, considering different concentrations (0.05, 0.20 and 0.50 mM) and UVC dosages of 42, 63 and 170 J/L, corresponding to UV contact times of 4, 7 and 18 s in a specific industrial equipment. UVC/PMS was the worst performing process (despite being able to achieve removals similar to UVC/H2O2), followed by UVC/PS. Both would only be preferred relatively to H2O2 if much lower concentrations of PMS or PS could be used to achieve the same removal of micropollutants (10 times lower was not enough). Additionally, PMS and PS production contributes more to the environmental footprint than the electricity use, unlike H2O2. Therefore even if considering lower treatment times when using sulfate-based oxidants, these will still be more impactful than using H2O2 at the studied conditions. Based on both avoided and generated impacts, H2O2 is the best option environmentally. In this case, the environmental impacts are more affected by an increase in treatment time rather than by an increase in the H2O2 concentration. It is thus best to opt for a higher concentration and the lowest treatment time possible for a significant ecotoxicity reduction. Electricity is a relevant parameter in all cases and its impact can be reduced in nearly all endpoint categories by opting for cleaner energy sources.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Animales , Peróxido de Hidrógeno , Estadios del Ciclo de Vida , Oxidantes , Oxidación-Reducción , Peróxidos , Rayos Ultravioleta , Aguas Residuales , Contaminantes Químicos del Agua/análisis
15.
Water Res ; 209: 117932, 2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34902759

RESUMEN

Improving the chemical and biological quality of treated wastewater is particularly important in world regions under water stress. In these regions, reutilization of wastewater is seen as an alternative to reduce water demand, particularly for agriculture irrigation. In a reuse scenario, the treated wastewater must have enough quality to avoid chemical and biological contamination of the receiving environment. Ozonation is among the technologies available to efficiently remove organic micropollutants and disinfect secondary effluents, being implemented in full-scale urban wastewater treatment plants worldwide. However, previous studies demonstrated that storage of ozone treated wastewater promoted the overgrowth of potentially harmful bacteria, putting at risk its reutilization, given for instance the possibility of contaminating the food-chain. Therefore, this study was designed to assess the potential beneficial role of inoculation of ozone treated wastewater with a diverse bacterial community during storage, for the control of the overgrowth of potentially hazardous bacteria, through bacterial competition. To achieve this goal, ozone treated wastewater (TWW) was diluted with river water (RW) in the same proportion, and the resulting bacterial community (RW+TWW) was compared to that of undiluted TWW over 7 days storage. As hypothesized, in contrast to TWW, where dominance of Beta- and Gammaproteobacteria, namely Pseudomonas spp. and Acinetobacter spp., was observed upon storage for 7 days, the bacterial communities of the diluted samples (RW+TWW) were diverse, resembling those of RW. Moreover, given the high abundance of antibiotic resistance genes in RW, the concentration of these genes in RW+TWW did not differ from that of the non-ozonated controls (WW, RW and RW+WW) over the storage period. These results highlight the necessity of finding a suitable pristine diverse bacterial community to be used in the future to compete with bacteria surviving ozonation, to prevent reactivation of undesirable bacteria during storage of treated wastewater.

16.
Nanomaterials (Basel) ; 11(11)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34835780

RESUMEN

TiO2-containing photocatalysts, which combine TiO2 with carbon-based materials, are promising materials for wastewater treatment due to synergistic photodegradation and adsorption phenomena. In this work, TiO2/AC composites were produced by the in situ immobilization of TiO2 nanoparticles over activated carbon (AC) derived from spent coffee grains, using different TiO2/AC proportions. The TiO2/AC composites were tested as adsorbents (dark) and as photocatalysts in a combined adsorption+photocatalytic process (solar irradiation) for methylene blue (MB) removal from ultrapure water, and from a secondary effluent (SecEf) of an urban wastewater treatment plant. All the materials were characterized by XRD (X-ray powder diffraction), N2 adsorption-desorption isotherms at -196 °C, SEM (scanning electron microscopy), UV-Vis diffuse reflectance, FTIR (Fourier-transform infrared spectroscopy), TPD (temperature programmed desorption), XPS (X-ray photoelectron spectroscopy) and TGA (thermogravimetric analysis). The TiAC60 (60% C) composite presented the lowest band gap (1.84 eV), while, for TiAC29 (29% C), the value was close to that of bare TiO2 (3.18 vs. 3.17 eV). Regardless of the material, the solar irradiation improved the percentage of MB discolouration when compared to adsorption in dark conditions. In the case of simultaneous adsorption+photocatalytic assays performed in ultrapure water, TiAC29 presented the fastest MB removal. Nevertheless, both TiAC29 and TiAC60 led to excellent MB removal percentages (96.1-98.1%). UV-induced photoregeneration was a promising strategy to recover the adsorption capacity of the materials, especially for TiAC60 and AC (>95%). When the assays were performed in SecEf, all the materials promoted discolouration percentages close to those obtained in ultrapure water. The bulk water parameters revealed that TiAC60 allowed the removal of a higher amount of MB, associated with the overall improvement of the SecEf quality.

17.
Water Res ; 201: 117374, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34214892

RESUMEN

Ozonation is among the currently used technologies to remove chemical and biological contaminants from secondary treated urban wastewater (UWW). Despite its effectiveness on the abatement of organic micropollutants (OMPs) and disinfection, previous studies have shown that regrow of bacteria may occur upon storage of the ozonated UWW. This reactivation has been attributed to the high content of assimilable organic carbon after treatment. In order to investigate if ozonation by-products are the main biological regrowth drivers in stored ozonated UWW, the ozonation surviving cells were resuspended in sterile bottled mineral water (MW), simulating a pristine oligotrophic environment. After 7 days storage, organisms such as Acinetobacter, Methylobacterium, Cupriavidus, Massilia, Acidovorax and Pseudomonas were dominant in both ozonated UWW and pristine MW, demonstrating that bacterial regrowth is not strictly related to the eventual presence of ozonation by-products, but instead with the ability of the surviving cells to cope with nutrient-poor environments. The resistome of UWW before and after ozonation was analysed by metagenomic techniques. Draft metagenome assembled genomes (dMAGs), recovered from both ozonated UWW and after cell resuspension in MW, harboured genes conferring resistance to diverse antibiotics classes. Some of these antibiotic resistance genes (ARGs) were located in the vicinity of mobile genetic elements, suggesting their potential to be mobilized. Among these, dMAGs affiliated to taxa with high relative abundance in stored water, such as P. aeruginosa and Acinetobacter spp., harboured ARGs conferring resistance to 12 and 4 families of antibiotics, respectively, including those encoding carbapenem hydrolysing oxacillinases. The results herein obtained point out that the design and development of new wastewater treatment technologies should include measures to attenuate the imbalance of the bacterial communities promoted by storage of the final treated wastewater, even when applying processes with high mineralization rates.


Asunto(s)
Purificación del Agua , Antibacterianos/farmacología , Bacterias/genética , Farmacorresistencia Microbiana , Genes Bacterianos , Aguas Residuales
18.
Sci Total Environ ; 796: 148914, 2021 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-34271374

RESUMEN

The changes in the chemical structure, surface morphology and crystallinity are reported for three different polymers (LDPE, PET and uPVC) in microplastic form, after being artificially exposed to different aging agents that can affect microplastics in urban environments: ozone, UV-C, and solar radiation. In parallel to the laboratory experiments, the microplastics were exposed to real weathering conditions for three-months in a building rooftop located in the city of Porto (Portugal). By analysing the (virgin and aged) microplastic samples periodically through ATR-FTIR spectroscopy and estimating the Carbonyl Index, it was possible to sketch the aging degree evolution through time and identify the most aggressive agents for each polymer regarding the changes in their chemical structure. SEM and XRD measurements allowed to complement the ATR-FTIR results, giving a more complete picture of the effects of each treatment on each polymer and suggesting that ATR-FTIR measurements are not sufficient to correctly evaluate the aging degree of microplastics. The changes observed in the microplastic particles studied support the theory that microplastics in the environment undergo aging and change their characteristics through time, potentially affecting their behavior and intensifying their impacts.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Plásticos/toxicidad , Polietileno , Tomografía de Emisión de Positrones , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
19.
Sci Total Environ ; 795: 148855, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34247083

RESUMEN

As the number of cancer patients increases, so does the consumption of cytostatic drugs, which are commonly used in chemotherapy. These compounds are already ubiquitous in wastewater treatment plant (WWTP) effluents and natural water streams, revealing the urgent need for efficient technologies for their removal from the aqueous phase. This work presents the elimination of five cytostatics of concern, found in Portuguese WWTP effluents: bicalutamide (BICA), capecitabine (CAP), cyclophosphamide (CYC), ifosfamide (IFO) and mycophenolic acid (MPA), using non-catalytic ozonation. Experiments were performed starting from trace-level concentrations (1 µM) for all cytostatics at neutral pH (pH: 7.3 ± 0.1) and room temperature (23 ± 1 °C), employing different ozone dosages. Under the studied conditions, CAP and MPA were quickly eliminated by direct ozonation, whereas BICA, CYC and IFO were more slowly degraded, as they undergo a breakdown via hydroxyl radicals generation (HO) exclusively. Increasing the O3 dosage from 1 to 3 mgO3/mgDOC, CAP, MPA and IFO were completely removed, and BICA and CYC were converted more than 90% after 180 min. The presence of both inorganic ions and organic matter in real water matrices (river water, WWTP secondary effluent) did not affect the removal of CAP and MPA. Nonetheless, there was an inefficient and very fast O3 consumption that resulted in only around 30% elimination of BICA, CYC and IFO, even if the reaction time is extended.


Asunto(s)
Citostáticos , Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Citostáticos/análisis , Humanos , Aguas Residuales/análisis , Agua , Contaminantes Químicos del Agua/análisis
20.
Sci Rep ; 11(1): 13817, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34226575

RESUMEN

Carbon xerogels (CXs) were synthesized by polycondensation of resorcinol and formaldehyde, followed by thermal annealing, and subjected to hydrothermal oxidation. Solid-phase extraction (SPE) cartridges were filled with CXs and tested for extraction of metaflumizone and other seven environmental micropollutants (acetamiprid, atrazine, isoproturon, methiocarb, carbamazepine, diclofenac, and perfluorooctanesulfonic acid) before chromatographic analysis. The recoveries obtained with the pristine CX were low for most analytes, except for metaflumizone (69 ± 5%). Moreover, it was concluded that the adsorption/desorption process of the micropollutants performed better on CXs with a less acidic surface (i.e., pristine CX). Thus, cartridges were prepared with pristine CX and multi-walled carbon nanotubes (MWCNTs) in a multi-layer configuration. This reusable cartridge was able to simultaneously extract the eight micropollutants and was used to validate an analytical methodology based on SPE followed by ultra-high performance liquid chromatography-tandem mass spectrometry. A widespread occurrence of 6/8 target compounds was observed in surface water collected in rivers supplying three drinking water treatment plants and in the resulting drinking water at the endpoint of each distribution system. Therefore, the first study employing CXs and MWCNTs as sorbent in multi-layer SPE cartridges is herein reported as a proof of concept for determination of multi-class water micropollutants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...