Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Vet World ; 16(10): 2135-2142, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38023268

RESUMEN

Background and Aim: Staphylococci, including Staphylococcus aureus, Staphylococcus chromogenes, and Staphylococcus haemolyticus, are significant bacteria that induce bovine mastitis, primarily because they can form biofilms in bovine teat canals. This study aimed to investigate the efficacy of Piper betle extract and a bovine teat dipping solution containing P. betle extract (BSP) against these mastitis-causing staphylococci. Materials and Methods: BSP was prepared using P. betle extract as the bioactive compound. The antibacterial activity of the plant extract and BSP against the pathogens was investigated using a broth microdilution method. The activity of the extract and BSP against the pathogen biofilms was also determined. A stability test was performed to observe the pH, color, turbidity, homogeneity, precipitation, and separation of BSP stored at 4°C and 25°C for up to 4 weeks. Results: The extract exhibited potent antibacterial activity against S. aureus and S. haemolyticus, with similar values for minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) ranging from 0.03 mg/mL to 0.125 mg/mL. The MIC and MBC values of the extract against S. chromogenes were 0.5-1 mg/mL and 0.5-2 mg/mL, respectively. Moreover, BSP exhibited MIC and MBC values of 12.5-50 v/v against all tested staphylococci isolates. When used at 1/2 and 1/4 × MIC, the extract and BSP significantly inhibited the formation of staphylococcal biofilms (p < 0.05) in the tested strains. The results indicated that treatment with 1/2 × MIC of the extract and BSP resulted in biofilm inhibition ranging from 30%-66% and 19%-39%, respectively. Furthermore, the extract at 16 × MIC eliminated 54%-86% of established mature isolate biofilms, whereas BSP removed 41%-61% of mature biofilm viability. Storage of BSP at 4°C did not change the factors associated with stability from the 1st to 4th week. Conclusion: These findings suggest that BSP may exhibit potential medicinal benefits in inhibiting the growth and biofilm formation of mastitis-inducing staphylococci in bovines.

2.
Comp Immunol Microbiol Infect Dis ; 103: 102093, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37976973

RESUMEN

Extended-spectrum beta-lactamase (ESBL) production and biofilm formation are mechanisms employed by Escherichia coli to resist beta-lactam antibiotics. Thus, we aimed to examine antibiotic resistance associated with ESBL production and biofilm formation in E. coli isolates from swine farms in Southern Thailand. In total, 159 E. coli isolates were obtained, with 44 isolates identified as ESBL producers, originating from feces (18.87 %) and wastewater (8.80 %) samples. All ESBL-producing strains exhibited resistance to ampicillin (100 %), followed by the cephalosporin group (97.73 %) and tetracycline (84.09 %). Multidrug resistance was observed in 17 isolates (38.63 %). Among the isolates from feces samples, the blaGES gene was the most prevalent, detected in 90 % of the samples, followed by blaCTX-M9 (86.67 %) and blaCTX-M1 (66.67 %), respectively. In the bacteria isolated from wastewater, both blaGES and blaCTX-M9 genes were the predominant resistance genes, detected in 100 % of the isolates, followed by blaCTX-M1 (64.29 %) and blaTEM (50 %), respectively. Strong biofilm formation was observed in 11 isolates (36.67 %) from feces and 4 isolates (25.57 %) from wastewater samples. Notably, nearly 100 % of ESBL-producing strains isolated from feces tested positive for both pgaA and pgaC genes, which play a role in intracellular adhesion and biofilm production. These findings contribute to the understanding and potential control of ESBL-producing E. coli, and the dissemination of antibiotic resistance and biofilm-related genes in swine farms.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Enfermedades de los Porcinos , Animales , Porcinos , Escherichia coli , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/veterinaria , Aguas Residuales , beta-Lactamasas/genética , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Biopelículas , Proteínas de la Membrana Bacteriana Externa
3.
Indian J Med Res ; 158(4): 439-446, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38006347

RESUMEN

BACKGROUND OBJECTIVES: Acinetobacter baumannii has emerged as a nosocomial pathogen with a tendency of high antibiotic resistance and biofilm production. This study aimed to determine the occurrence of A. baumannii from different clinical specimens of suspected bacterial infections and furthermore to see the association of biofilm production with multidrug resistance and expression of virulence factor genes in A. baumannii. METHODS: A. baumannii was confirmed in clinical specimens by the detection of the blaOXA-51-like gene. Biofilm production was tested by microtitre plate assay and virulence genes were detected by real-time PCR. RESULTS: A. baumannii was isolated from a total of 307 clinical specimens. The isolate which showed the highest number of A. baumannii was an endotracheal tube specimen (44.95%), then sputum (19.54%), followed by pus (17.26%), urine (7.49%) and blood (5.86%), and <2 per cent from body fluids, catheter-tips and urogenital specimens. A resistance rate of 70-81.43 per cent against all antibiotics tested, except colistin and tigecycline, was noted, and 242 (78.82%) isolates were multidrug-resistant (MDR). Biofilm was detected in 205 (66.78%) with a distribution of 54.1 per cent weak, 10.42 per cent medium and 2.28 per cent strong biofilms. 71.07 per cent of MDR isolates produce biofilm (P<0.05). Amongst virulence factor genes, 281 (91.53%) outer membrane protein A (OmpA) and 98 (31.92%) biofilm-associated protein (Bap) were detected. Amongst 100 carbapenem-resistant A. baumannii, the blaOXA-23-like gene was predominant (96%), the blaOXA-58-like gene (6%) and none harboured the blaOXA-24-like gene. The metallo-ß-lactamase genes blaIMP-1 (4%) and blaVIM-1(8%) were detected, and 76 per cent showed the insertion sequence ISAba1. INTERPRETATION CONCLUSIONS: The majority of isolates studied were from lower respiratory tract specimens. The high MDR rate and its positive association with biofilm formation indicate the nosocomial distribution of A. baumannii. The biofilm formation and the presence of Bap were not interrelated, indicating that biofilm formation was not regulated by a single factor. The MDR rate and the presence of OmpA and Bap showed a positive association (P<0.05). The isolates co-harbouring different carbapenem resistance genes were the predominant biofilm producers, which will seriously limit the therapeutic options suggesting the need for strict antimicrobial stewardship and molecular surveillance in hospitals.


Asunto(s)
Acinetobacter baumannii , Infecciones Bacterianas , Infección Hospitalaria , Humanos , Virulencia/genética , Farmacorresistencia Bacteriana Múltiple/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Carbapenémicos/farmacología , Carbapenémicos/uso terapéutico , beta-Lactamasas/genética , Factores de Virulencia/genética , Biopelículas , Infección Hospitalaria/microbiología , Proteínas Bacterianas/genética , Pruebas de Sensibilidad Microbiana
4.
J Clin Med ; 12(18)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37762736

RESUMEN

L-Carnitine, a natural antioxidant found in mammals, plays a crucial role in the transport of long-chain fatty acids across the inner mitochondrial membrane. It is used as a nutritional supplement by professional athletes, improving performance and post-exercise recovery. Additionally, its therapeutic applications, including those in male infertility, have been investigated, as it may act as a defense mechanism against the excessive production of reactive oxygen species (ROS) in the testis, a process that can lead to sperm damage. This effect is achieved by enhancing the expression and activity of enzymes with antioxidant properties. Nevertheless, the mechanisms underlying the benefits of L-Carnitine remain unknown. This review aims to consolidate the current knowledge about the potential benefits of L-Carnitine and its role in male (in)fertility. Considering in vitro studies with Sertoli cells, pre-clinical studies, and investigations involving infertile men, a comprehensive understanding of the effects of L-Carnitine has been established. In vitro studies suggest that L-Carnitine has a direct influence on somatic Sertoli cells, improving the development of germ cells. Overall, evidence supports that L-Carnitine can positively impact male fertility, even at a relatively low dose of 2 g/day. This supplementation enhances sperm parameters, regulates hormone levels, reduces ROS levels, and subsequently improves fertility rates. However, further research is needed to elucidate the underlying mechanisms and establish optimal doses. In conclusion, the role of L-Carnitine in the field of male reproductive health is highlighted, with the potential to improve sperm quality and fertility.

5.
PeerJ ; 11: e15590, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37529215

RESUMEN

The biosynthesis of nanoparticles using the green route is an effective strategy in nanotechnology that provides a cost-effective and environmentally friendly alternative to physical and chemical methods. This study aims to prepare an aqueous extract of Ocimum sanctum (O. sanctum)-based silver nanoparticles (AgNPs) through the green route and test their antibacterial activity. The biosynthesized silver nanoparticles were characterised by colour change, UV spectrometric analysis, FTIR, and particle shape and size morphology by SEM and TEM images. The nanoparticles are almost spherical to oval or rod-shaped with smooth surfaces and have a mean particle size in the range of 55 nm with a zeta potential of -2.7 mV. The antibacterial activities of AgNPs evaluated against clinically isolated multidrug-resistant Acinetobacter baumannii (A. baumannii) showed that the AgNPs from O. sanctum are effective in inhibiting A. baumannii growth with a zone of inhibition of 15 mm in the agar well diffusion method and MIC and MBC of 32 µg/mL and 64 µg/mL, respectively. The SEM images of A. baumannii treated with AgNPs revealed damage and rupture in bacterial cells. The time-killing assay by spectrophotometry revealed the time- and dose-dependent killing action of AgNPs against A. baumannii, and the assay at various concentrations and time intervals indicated a statistically significant result in comparison with the positive control colistin at 2 µg/mL (P < 0.05). The cytotoxicity test using the MTT assay protocol showed that prepared nanoparticles of O. sanctum are less toxic against human cell A549. This study opens up a ray of hope to explore the further research in this area and to improve the antimicrobial activities against multidrug resistant bacteria.


Asunto(s)
Acinetobacter baumannii , Acinetobacter calcoaceticus , Nanopartículas del Metal , Humanos , Nanopartículas del Metal/uso terapéutico , Plata/farmacología , Ocimum sanctum , Antibacterianos/farmacología
6.
Vet World ; 16(5): 1131-1140, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37576777

RESUMEN

Background and Aim: Probiotics are beneficial microorganisms for humans and animals. In this study, we developed a microencapsulated probiotic with antibacterial activity against avian pathogenic Escherichia coli (APEC). Materials and Methods: Alignment of the 16S rRNA sequences of the isolate WU222001 with those deposited in GenBank revealed that the isolate was Pediococcus acidilactici with 99.6% homology. This bacterium was characterized as a probiotic based on its tolerance toward in vitro gastrointestinal tract (GIT) conditions, hydrophobicity, and auto-aggregation. The antibacterial activity of the probiotic's culture supernatant against APEC was investigated using a broth microdilution assay. Pediococcus acidilactici was microencapsulated using sodium alginate and agar with diameters ranging from 47 to 61 µm. Then, physicochemical characteristics and stability of the microcapsules were determined. Results: The isolate was characterized as a probiotic based on its resistance to low pH, bile salts, and pancreatin, with relative values of 79.2%, 70.95%, and 90.64%, respectively. Furthermore, the bacterium exhibited 79.56% auto-aggregation and 55.25% hydrophobicity at 24 h. The probiotic's culture supernatant exhibited strong antibacterial activity against clinical APEC isolates with minimum inhibitory concentration and minimum bactericidal concentration of 12.5% and 25% v/v, respectively. Microencapsulation-enhanced bacterial viability in GIT compared to free cells. Moreover, 89.65% of the encapsulated cells were released into the simulated intestinal fluid within 4 h. The viable count in microcapsules was 63.19% after 3 months of storage at 4°C. Conclusion: The results indicated that the culture supernatant of P. acidilactici inhibited the growth of APEC. In addition, microencapsulation extends the viability of P. acidilactici under harsh conditions, indicating its potential application in the feed production.

7.
Vet World ; 16(6): 1346-1355, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37577190

RESUMEN

The emergence of antibiotic-resistant bacteria and hospital-acquired bacterial infection has become rampant due to antibiotic overuse. Virulence factors are secondary to bacterial growth and are important in their pathogenesis, and therefore, new antimicrobial therapies to inhibit bacterial virulence factors are becoming important strategies against antibiotic resistance. Here, we focus on anti-virulence factors that act through anti-quorum sensing and the subsequent clearance of bacteria by antimicrobial compounds, especially active herbal extracts. These quorum sensing systems are based on toxins, biofilms, and efflux pumps, and bioactive compounds isolated from medicinal plants can treat bacterial virulence pathologies. Ideally, bacterial virulence factors are secondary growth factors of bacteria. Hence, inhibition of bacterial virulence factors could reduce bacterial pathogenesis. Furthermore, anti-virulence factors from herbal compounds can be developed as novel treatments for bacterial infection. Therefore, this narrative review aims to discuss bacterial virulence factors acting through quorum sensing systems that are preserved as targets for treating bacterial infection by plant-derived compounds.

8.
Diseases ; 11(2)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37092446

RESUMEN

The WHO declared coronavirus disease 2019 (COVID-19) a pandemic in March 2020, which was caused by novel coronavirus severe acute respiratory coronavirus 2 (SARS-CoV-2). SARS-CoV-2 made its first entry into the world in November 2019, and the first case was detected in Wuhan, China. Mutations in the SARS-CoV-2 genome distressed life in almost every discipline by the extended production of novel viral variants. In this article, authorized SARS-CoV-2 vaccines including mRNA vaccines, DNA vaccines, subunit vaccines, inactivated virus vaccines, viral vector vaccine, live attenuated virus vaccines and mix and match vaccines will be discussed based on their mechanism, administration, storage, stability, safety and efficacy. The information was collected from various journals via electronic searches including PubMed, Science Direct, Google Scholar and the WHO platform. This review article includes a brief summary on the pathophysiology, epidemiology, mutant variants and management strategies related to COVID-19. Due to the continuous production and unsatisfactory understanding of novel variants of SARS-CoV-2, it is important to design an effective vaccine along with long-lasting protection against variant strains by eliminating the gaps through practical and theoretical knowledge. Consequently, it is mandatory to update the literature through previous and ongoing trials of vaccines tested among various ethnicities and age groups to gain a better insight into management strategies and combat complications associated with upcoming novel variants of SARS-CoV-2.

9.
Vet Sci ; 10(4)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37104416

RESUMEN

Gastrointestinal parasites (GIP) are a major cause of disease and production loss in livestock. Some have zoonotic potential, so production animals can be a source of human infections. We describe the prevalence of GIP in domestic mammals in Southeastern Iran. Fresh fecal samples (n = 200) collected from cattle (n = 88), sheep (n = 50), goats (n = 23), camels (n = 30), donkeys (n = 5), horse (n = 1), and dogs (n = 3) were subjected to conventional coprological examination for the detection of protozoan (oo)cysts and helminth ova. Overall, 83% (166/200) of the samples were positive for one or more GIP. Helminths were found in dogs, donkeys, sheep (42%), camels (37%), goats (30%), and cattle (19%), but not in the horse. Protozoa were found in cattle (82%), goats (78%), sheep (60%), and camels (13%), but not in donkeys, dogs, or the horse. Lambs were 3.5 times more likely to be infected by protozoa than sheep (OR = 3.5, 95% CI: 1.05-11.66), whereas sheep were at higher odds of being infected by helminths than lambs (OR = 4.09, 95% CI: 1.06-16.59). This is the first study assessing the prevalence of GIP in domestic mammals in Southeastern Iran.

10.
Antioxidants (Basel) ; 13(1)2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38247463

RESUMEN

Leydig cells (LCs) play a pivotal role in male fertility, producing testosterone. Chromium (III) picolinate (CrPic3), a contentious supplement with antidiabetic and antioxidant properties, raises concerns regarding male fertility. Using a rodent LC line, we investigated the cytotoxicity of increasing CrPic3 doses. An insulin resistance (IR) model was established using palmitate (PA), and LCs were further exposed to CrPic3 to assess its antioxidant/antidiabetic activities. An exometabolome analysis was performed using 1H-NMR. Mitochondrial function and oxidative stress were evaluated via immunoblot. Steroidogenesis was assessed by quantifying androstenedione through ELISA. Our results uncover the toxic effects of CrPic3 on LCs even at low doses under IR conditions. Furthermore, even under these IR conditions, CrPic3 fails to enhance glucose consumption but restores the expression of mitochondrial complexes CII and CIII, alleviating oxidative stress in LCs. While baseline androgen production remained unaffected, CrPic3 promoted androstenedione production in LCs in the presence of PA, suggesting that it promotes cholesterol conversion into androgenic intermediates in this context. This study highlights the need for caution with CrPic3 even at lower doses. It provides valuable insights into the intricate factors influencing LCs metabolism and antioxidant defenses, shedding light on potential benefits and risks of CrPic3, particularly in IR conditions.

11.
PeerJ ; 10: e14468, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36523474

RESUMEN

Garcinia mangostana L., also known as the mangosteen tree, is a native medicinal plant in Southeast Asia having a wide variety of pharmacologically active compounds, including xanthonoid mangostin. In this study, we examined the pharmacological activities of the selected semi-synthetic mangostin derivative, namely, amoebicidal activity, encystation inhibition, excystation activity, and removal capacity of adhesive Acanthamoeba from the surface of contact lens (CL). Among the three derivatives, C1 exhibited promising anti-Acanthamoeba activity against Acanthamoeba triangularis WU19001 trophozoites and cysts. SEM images displayed morphological changes in Acanthamoeba trophozoites, including the loss of acanthopodia, pore formation in the cell membrane, and membrane damage. In addition, the treated cyst was shrunken and adopted an irregular flat cyst shape. Under a fluorescence microscope, acridine orange and propidium iodide (AO/PI) staining revealed C1 induced condensation of cytoplasm and chromatin with the loss of cell volume in the treated trophozoites, while calcofluor white staining demonstrated the leakage of cell wall in treated cysts, leading to cell death. Interestingly, at the concentration ranges in which C1 showed the anti-Acanthamoeba effects (IC50 values ranging from 0.035-0.056 mg/mL), they were not toxic to Vero cells. C1 displayed the highest inhibitory effect on A. triangularis encystation at 1/16×MIC value (0.004 mg/mL). While C1 demonstrated the excystation activity at 1/128×MIC value with a high rate of 89.47%. Furthermore, C1 exhibited the removal capacity of adhesive Acanthamoeba from the surface of CL comparable with commercial multipurpose solutions (MPSs). Based on the results obtained, C1 may be a promising lead agent to develop a therapeutic for the treatment of Acanthamoeba infections and disinfectant solutions for CL.


Asunto(s)
Acanthamoeba , Lentes de Contacto , Animales , Chlorocebus aethiops , Células Vero , Soluciones para Lentes de Contacto/farmacología , Trofozoítos
12.
Vet World ; 15(10): 2391-2398, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36425129

RESUMEN

Background and Aim: Bacillus cereus and Staphylococcus aureus cause foodborne intoxication in humans and animals. Pathogens can produce biofilms controlled by the quorum sensing system. The study aimed to investigate the antibacterial, antibiofilm, and anti-quorum sensing activities of Coffea canephora P. ex Fr. (Robusta coffee) extracts against B. cereus and S. aureus. Materials and Methods: Ethanol extracts of fruit peels and seeds of Robusta coffee were tested for antibacterial activity against B. cereus and S. aureus using a broth microdilution assay. Reduction of the biofilm formation and elimination of the viability of mature biofilm-grown cells of B. cereus and S. aureus were determined. Inhibition of quorum sensing activity in Chromobacterium violaceum by the extracts was investigated using the disk diffusion method and flask incubation assay. Results: Fresh fruit peel extract showed the strongest antibacterial activity against B. cereus and S. aureus with minimum inhibitory concentration (MIC) values of 2 and 4 mg/mL, respectively. However, the extracts did not inhibit Escherichia coli, avian pathogenic E. coli, and Pseudomonas aeruginosa at 8 mg/mL. Significant inhibition of biofilm formation at 1/2 × MIC of the fresh peel extract was detected in B. cereus (56.37%) and S. aureus (39.69 %), respectively. At 8 × MIC of the fresh peel extract, a significant elimination of the mature biofilm viability was detected in B. cereus (92.48%) and S. aureus (74.49%), respectively. The results showed that fresh and dried peel fruit extracts at 1/2 × MIC significantly reduced violacein production with the highest percentage inhibition ranging from 44.53 to 47.48% at 24 h (p ≤ 0.05). Conclusion: The results of the present study suggest the potential therapeutic benefits of Robusta coffee extracts in inhibiting the growth, biofilm, and quorum sensing of both B. cereus and S. aureus. The results put forward an alternative strategy to control the foodborne intoxications caused by both pathogens.

13.
Vet World ; 15(10): 2466-2474, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36425140

RESUMEN

Background and Aim: Prebiotics are a group of nutrients or compounds that are degraded by the gut microbiota, including Lacticaseibacillus paracasei. The probiotic plays an important role in adhesion to the gut and is able to produce antimicrobial substances to inhibit pathogens. This study aimed to investigate the effects of Sangyod rice bran extract on the growth promotion of L. paracasei. Furthermore, antibacterial activity of the extract and L. paracasei supernatants cultured in De Man, Rogosa and Sharpe (MRS) medium plus the extract against zoonotic and foodborne pathogens was investigated. Materials and Methods: Antibacterial activity of the crude extract and the oil from Sangyod rice bran against the pathogens, including Bacillus cereus, Staphylococcus aureus, Escherichia coli, Avian pathogenic E. coli, and Pseudomonas aeruginosa was investigated using broth microdilution assay. The effects of the crude extract and the oil on the growth and adhesion of L. paracasei were further determined. The antibacterial activity of L. paracasei supernatant cultured in the medium supplemented with the extract and the oil against the pathogens was determined by agar well diffusion assay, followed by the broth microdilution assay. Finally, the chemical constituents and antioxidant activity of the crude extract and the oil from Sangyod rice bran were investigated. Results: The crude extract and the oil from Sangyod rice bran enhanced L. paracasei growth during the exponential phase. Furthermore, the crude extract at 0.25 mg/mL significantly enhanced the adhesion of L. paracasei to the surface compared with the control. Both minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values of the crude extract against B. cereus and S. aureus were 0.5 and 1.0 mg/mL, respectively. All pathogens were sensitive to the supernatant of L. paracasei with similar MIC and MBC ranging from 12.5% v/v to 50% v/v. However, the MIC and MBC values of L. paracasei supernatant grown in MRS medium plus the crude extract and oil were not significantly different compared to the supernatant obtained from MRS alone. The crude extract had free radical scavenging activities with IC50 values at 0.61 mg/mL. Conclusion: The results suggested the potential benefits of the crude extract from Sangyod rice bran for inducing the growth and the adhesion of L. paracasei and inhibiting zoonotic and foodborne pathogens.

14.
Plants (Basel) ; 11(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36432843

RESUMEN

Verbena officinalis L. or vervain is an herbal medicine and dietary supplement used worldwide. It is used for antidepressant and anticonvulsant purposes, as well as to treat inflammatory disorders, skin burns, abrasions, and gastric diseases, among others. Here, we investigated the biochemical, antioxidant, and histopathological effects of vervain against chronic physical stress. Male Wistar rats were submitted to chronic physical training and oral administration of 200 mg/kg of extract for 7 weeks. Control animals were not treated with either stress or vervain. Body weight was monitored during the study. Liver, kidney, spleen, testis, epididymis, heart, skeletal muscle, and brain samples were collected. Blood cholesterol, lactate dehydrogenase (LDH), bilirubin, and creatinine kinase (CREA), among others, were studied. Glutathione peroxidase (GPox) and superoxide dismutase (SOD) antioxidant activity was analyzed in the blood, liver, and kidney. Testosterone measurements were also performed on whole testis extracts. We found significant weight ratios differences in the epididymis, brain, and heart. Animals submitted to training showed hemorrhagic livers. Kidney histology was affected by both stress and vervain. Cell disruption and vacuolization were observed in the testes and epididymis of animals submitted to stress. Hematological and biochemical markers as CREA, LDH, TP, CKI, URCA, γGT, and glucose revealed statistically significantly differences. Additionally, the activity of glutathione peroxide (GPox) and superoxide dismutase (SOD) in the blood was also impacted. Both stress and vervain have significant in vivo effects. Infusions of vervain include phenylpropanoids, iridoids, verbenalin, hastatoside, and flavonoids, amongst others, which interact synergistically to produce the preclinical effects reported here.

15.
Nanomaterials (Basel) ; 12(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36296751

RESUMEN

Zinc oxide nanoparticles (ZnO NPs) are one of the most used nanoparticles due to their unique physicochemical and biological properties. There is, however, a growing concern about their negative impact on male reproductive health. Therefore, in the present study, two different strategies were used to evaluate the recovery ability of spermatogonia cells from the first stage of spermatogenesis (GC-1 spg cell line) after being exposed to a cytotoxic concentration of ZnO NPs (20 µg/mL) for two different short time periods, 6 and 12 h. The first strategy was to let the GC-1 cells recover after ZnO NPs exposure in a ZnO NPs-free medium for 4 days. At this phase, cell viability assays were performed to evaluate whether this period was long enough to allow for cell recovery. Exposure to ZnO NPs for 6 h and 12 h induced a decrease in viability of 25% and 41%, respectively. However, the recovery period allowed for an increase in cell viability from 16% to 25% to values as high as 91% and 84%. These results strongly suggest that GC-1 cells recover, but not completely, given that the cell viability does not reach 100%. Additionally, the impact of a synthetic chalcone (E)-3-(2,6-dichlorophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (1) to counteract the reproductive toxicity of ZnO NPs was investigated. Different concentrations of chalcone 1 (0-12.5 µM) were used before and during exposure of GC-1 cells to ZnO NPs to mitigate the damage induced by NPs. The protective ability of this compound was evaluated through viability assays, levels of DNA damage, and cytoskeleton dynamics (evaluating the acetylated α-tubulin and ß-actin protein levels). The results indicated that the tested concentrations of chalcone 1 can attenuate the genotoxicity induced by ZnO NPs for shorter exposure periods (6 h). Chalcone 1 supplementation also increased cell viability and stabilized the microtubules. However, the antioxidant potential of this compound remains to be elucidated. In conclusion, this work addressed the main cytotoxic effects of ZnO NPs on a spermatogonia cell line and analyzed two different strategies to mitigate this damage, which represent a significant contribution to the field of male fertility.

18.
Vet World ; 15(6): 1481-1488, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35993065

RESUMEN

Background and Aim: Lepidium meyenii Walp (Maca) is an herbaceous plant that grows in the Peruvian Andes and it has been widely used as a nutritional supplement and fertility enhancer and has been used in the treatment of a variety of diseases, such as rheumatism, respiratory disorders, and anemia. The most notable feature of Maca is its potent antioxidant capacity, which helps in the scavenging of free radicals and protection of cells from oxidative stress. This study aimed to evaluate the in vitro effect of Maca extract on thawed sperm cells from bulls. Materials and Methods: Three dilutions of 1, 10, and 100 mg/mL of Maca extract were incubated with frozen-thawed bovine semen and analyzed at 1, 3, and 24 h of exposure time, evaluating the activity of the extract on the DNA, motility, morphology, viability, integrity of the membrane and acrosome of spermatozoa. Results: The Maca extract improved the studied sperm parameters of motility, acrosome integrity, vitality, and DNA integrity of sperm cells at a concentration of 10 mg/mL, and at 1 mg/mL, an improvement was observed in the morphology and integrity of the membrane. However, the best activity of the Maca extract was observed on the DNA integrity of the sperm, which was effective at the three concentrations evaluated after 24 h of incubation. Conclusion: The results indicate that L. meyenii can help in maintaining spermatozoa cellular integrity after the frozen-thaw process, especially in the protection against DNA fragmentation. Therefore, Maca would be a feasible supplementation to protect sperm to maintain their fertile ability after thawing.

19.
PeerJ ; 10: e13657, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35811814

RESUMEN

Background: Curcumin is an active compound derived from turmeric, Curcuma longa, and is known for its benefits to human health. The amoebicidal activity of curcumin against Acanthamoeba triangularis was recently discovered. However, a physiological change of intracellular pathways related to A. triangularis encystation mechanism, including autophagy in the surviving amoeba after curcumin treatment, has never been reported. This study aims to investigate the effect of curcumin on the survival of A. triangularis under nutrient starvation and nutrient-rich condition, as well as to evaluate the A. triangularis encystation and a physiological change of Acanthamoeba autophagy at the mRNA level. Methods: In this study, A. triangularis amoebas were treated with a sublethal dose of curcumin under nutrient starvation and nutrient-rich condition and the surviving amoebas was investigated. Cysts formation and vacuolization were examined by microscopy and transcriptional expression of autophagy-related genes and other encystation-related genes were evaluated by real-time PCR. Results: A. triangularis cysts were formed under nutrient starvation. However, in the presence of the autophagy inhibitor, 3-methyladenine (3-MA), the percentage of cysts was significantly reduced. Interestingly, in the presence of curcumin, most of the parasites remained in the trophozoite stage in both the starvation and nutrient-rich condition. In vacuolization analysis, the percentage of amoebas with enlarged vacuole was increased upon starvation. However, the percentage was significantly declined in the presence of curcumin and 3-MA. Molecular analysis of A. triangularis autophagy-related (ATG) genes showed that the mRNA expression of the ATG genes, ATG3, ATG8b, ATG12, ATG16, under the starvation with curcumin was at a basal level along the treatment. The results were similar to those of the curcumin-treated amoebas under a nutrient-rich condition, except AcATG16 which increased later. On the other hand, mRNA expression of encystation-related genes, cellulose synthase and serine proteinase, remained unchanged during the first 18 h, but significantly increased at 24 h post treatment. Conclusion: Curcumin inhibits cyst formation in surviving trophozoites, which may result from its effect on mRNA expression of key Acanthamoeba ATG-related genes. However, further investigation into the mechanism of curcumin in A. triangularis trophozoites arrest and its association with autophagy or other encystation-related pathways is needed to support the future use of curcumin.


Asunto(s)
Acanthamoeba , Amoeba , Curcumina , Animales , Humanos , Acanthamoeba/genética , Curcumina/farmacología , Trofozoítos/fisiología
20.
Plants (Basel) ; 11(14)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35890469

RESUMEN

PCSK9 is a promising target for developing novel cholesterol-lowering drugs. We developed a recipe that combined molecular docking, GC-MS/MS, and real-time PCR to identify potential PCSK9 inhibitors for herb ratio determination. Three herbs, Carthamus tinctorius, Coscinium fenestratum, and Zingiber officinale, were used in this study. This work aimed to evaluate cholesterol-lowering through a PCSK9 inhibitory mechanism of these three herbs for defining a suitable ratio. Chemical constituents were identified using GC-MS/MS. The PCSK9 inhibitory potential of the compounds was determined using molecular docking, real-time PCR, and Oil red O staining. It has been shown that most of the active compounds of C. fenestratum and Z. officinale inhibit PCSK9 when extracted with water, and C. fenestratum has been shown to yield tetraacetyl-d-xylonic nitrile (27.92%) and inositol, 1-deoxy-(24.89%). These compounds could inhibit PCSK9 through the binding of 6 and 5 hydrogen bonds, respectively, while the active compound in Z. officinale is 2-Formyl-9-[.beta.-d-ribofuranosyl] hypoxanthine (4.37%) inhibits PCSK9 by forming 8 hydrogen bonds. These results suggest that a recipe comprising three parts C. fenestratum, two parts Z. officinale, and one part C. tinctorius is a suitable herbal ratio for reducing lipid levels in the bloodstream through a PCSK9 inhibitory mechanism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...