Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Intervalo de año de publicación
1.
mBio ; 13(1): e0347821, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35073735

RESUMEN

Trans-sialidases (TS) are unusual enzymes present on the surface of Trypanosoma cruzi, the causative agent of Chagas disease. Encoded by the largest gene family in the T. cruzi genome, only few members of the TS family have catalytic activity. Active trans-sialidases (aTS) are responsible for transferring sialic acid from host glycoconjugates to mucins, also present on the parasite surface. The existence of several copies of TS genes has impaired the use of reverse genetics to study this highly polymorphic gene family. Using CRISPR-Cas9, we generated aTS knockout cell lines displaying undetectable levels of TS activity, as shown by sialylation assays and labeling with antibodies that recognize sialic acid-containing mucins. In vitro infection assays showed that disruption of aTS genes does not affect the parasite's capacity to invade cells or to escape from the parasitophorous vacuole but resulted in impaired differentiation of amastigotes into trypomastigotes and parasite egress from the cell. When inoculated into mice, aTS mutants were unable to establish infection even in the highly susceptible gamma interferon (IFN-γ) knockout mice. Mice immunized with aTS mutants were fully protected against a challenge infection with the virulent T. cruzi Y strain. Altogether, our results confirmed the role of aTS as a T. cruzi virulence factor and indicated that aTS play a major role during the late stages of intracellular development and parasite egress. Notably, mutants lacking TS activity are completely avirulent in animal models of infection and may be used as a live attenuated vaccine against Chagas disease. IMPORTANCE Trypanosoma cruzi is the causative agent of Chagas disease, a neglected tropical disease that affects approximately 6 to 8 million people and for which there is no effective treatment or vaccine. The parasite expresses a family of surface proteins, named trans-sialidases, responsible for transferring sialic acid from host glycoconjugates to parasite mucins. Although recognized as a main virulence factor, the multiple roles of these proteins during infection have not yet been fully characterized, mainly because the presence of several copies of aTS genes has impaired their study using reverse genetics. By applying CRISPR-Cas9, we generated aTS knockout parasites and showed that, although aTS parasite mutants were able to infect cells in vitro, they have an impaired capacity to egress from the infected cell. Importantly, aTS mutants lost the ability to cause infection in vivo but provided full protection against a challenge infection with a virulent strain.


Asunto(s)
Enfermedad de Chagas , Parásitos , Trypanosoma cruzi , Animales , Ratones , Trypanosoma cruzi/genética , Parásitos/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Glicoproteínas/metabolismo , Enfermedad de Chagas/parasitología , Neuraminidasa , Mucinas/metabolismo , Factores de Virulencia , Mamíferos/metabolismo
2.
mBio ; 12(5): e0130721, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34607465

RESUMEN

Toxoplasmosis affects one-third of the human population worldwide. Humans are accidental hosts and are infected after consumption of undercooked meat and water contaminated with Toxoplasma gondii cysts and oocysts, respectively. Neutrophils have been shown to participate in the control of T. gondii infection in mice through a variety of effector mechanisms, such as reactive oxygen species (ROS) and neutrophil extracellular trap (NET) formation. However, few studies have demonstrated the role of neutrophils in individuals naturally infected with T. gondii. In the current study, we evaluated the activation status of neutrophils in individuals with acute or chronic toxoplasmosis and determined the role of T. gondii-induced NET formation in the amplification of the innate and adaptive immune responses. We observed that neutrophils are highly activated during acute infection through increased expression of CD66b. Moreover, neutrophils from healthy donors (HDs) cocultured with tachyzoites produced ROS and formed NETs, with the latter being dependent on glycolysis, succinate dehydrogenase, gasdermin D, and neutrophil elastase. Furthermore, we observed elevated levels of the chemokines (CXC motif) CXCL8 and (CC motif) CCL4 ligands in plasma from patients with acute toxoplasmosis and production by neutrophils from HDs exposed to T. gondii. Finally, we showed that T. gondii-induced NETs activate neutrophils and promote the recruitment of autologous CD4+ T cells and the production of interferon gamma (IFN-γ), tumor necrosis factor (TNF), interleukin 6 (IL-6), IL-17, and IL-10 by peripheral blood mononuclear cells. In conclusion, we demonstrated that T. gondii activates neutrophils and promotes the release of NETs, which amplify human innate and adaptive immune responses. IMPORTANCE Approximately one-third of the human population is estimated to be chronically infected with the obligate intracellular parasite Toxoplasma gondii. Humans are accidental hosts that are infected with T. gondii after consumption of undercooked meat or contaminated water. Neutrophils have been shown to control T. gondii growth by different mechanisms, including neutrophil extracellular traps (NETs). In the current study, we observed that neutrophils are highly activated during acute toxoplasmosis. We also determined that T. gondii-induced NETs are dependent on the energetic profile of neutrophils as well as the production of ROS and gasdermin D (GSDMD) cleavage. In addition, we showed that T. gondii-induced NETs activate neutrophils, promote the recruitment of autologous CD4+ T cells, and induce the production of cytokines by peripheral blood mononuclear cells, amplifying the innate and adaptive immune responses.


Asunto(s)
Inmunidad Adaptativa , Trampas Extracelulares/inmunología , Inmunidad Innata , Neutrófilos/inmunología , Toxoplasma/inmunología , Adulto , Antígenos CD/genética , Antígenos CD/inmunología , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/inmunología , Quimiocinas/inmunología , Femenino , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/inmunología , Humanos , Interleucinas/clasificación , Interleucinas/inmunología , Leucocitos Mononucleares/inmunología , Masculino , Neutrófilos/parasitología , Adulto Joven
3.
PLoS Pathog ; 16(8): e1008781, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32810179

RESUMEN

Chagas disease is caused by Trypanosoma cruzi, a protozoan parasite that has a heterogeneous population composed of a pool of strains with distinct characteristics, including variable levels of virulence. In previous work, transcriptome analyses of parasite genes after infection of human foreskin fibroblasts (HFF) with virulent (CL Brener) and non-virulent (CL-14) clones derived from the CL strain, revealed a reduced expression of genes encoding parasite surface proteins in CL-14 compared to CL Brener during the final steps of the intracellular differentiation from amastigotes to trypomastigotes. Here we analyzed changes in the expression of host genes during in vitro infection of HFF cells with the CL Brener and CL-14 strains by analyzing total RNA extracted from cells at 60 and 96 hours post-infection (hpi) with each strain, as well as from uninfected cells. Similar transcriptome profiles were observed at 60 hpi with both strains compared to uninfected samples. However, at 96 hpi, significant differences in the number and expression levels of several genes, particularly those involved with immune response and cytoskeleton organization, were observed. Further analyses confirmed the difference in the chemokine/cytokine signaling involved with the recruitment and activation of immune cells such as neutrophils upon T. cruzi infection. These findings suggest that infection with the virulent CL Brener strain induces a more robust inflammatory response when compared with the non-virulent CL-14 strain. Importantly, the RNA-Seq data also exposed an unexplored role of fibroblasts as sentinel cells that may act by recruiting neutrophils to the initial site of infection. This role for fibroblasts in the regulation of the inflammatory response during infection by T. cruzi was corroborated by measurements of levels of different chemokines/cytokines during in vitro infection and in plasma from Chagas disease patients as well as by neutrophil activation and migration assays.


Asunto(s)
Enfermedad de Chagas/metabolismo , Fibroblastos , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Activación Neutrófila , Neutrófilos , Trypanosoma cruzi/metabolismo , Enfermedad de Chagas/genética , Enfermedad de Chagas/patología , Fibroblastos/metabolismo , Fibroblastos/parasitología , Fibroblastos/patología , Humanos , Neutrófilos/metabolismo , Neutrófilos/parasitología , Neutrófilos/patología , Trypanosoma cruzi/genética , Trypanosoma cruzi/patogenicidad , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
4.
BCM res. notes ; 4(30): 1-9, 2011.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1060132

RESUMEN

Intimin is an important virulence factor involved in the pathogenesis of enteropathogenic Escherichiacoli (EPEC) and enterohemorrhagic Escherichia coli (EHEC). Both pathogens are still important causes of diarrhea inchildren and adults in many developing and industrialized countries. Considering the fact that antibodies areimportant tools in the detection of various pathogens, an anti-intimin IgG2b monoclonal antibody was previously raised in immunized mice with the conserved sequence of the intimin molecule (int388-667). In immunoblotting assays, this monoclonal antibody showed excellent specificity. Despite good performance, the monoclonal antibody failed to detect some EPEC and EHEC isolates harboring variant amino acids within the 338-667 regions of intimin molecules. Consequently, motivated by its use for diagnosis purposes, in this study we aimed to the cloning and expression of the single-chain variable fragment from this monoclonal antibody (scFv).Anti-intimin hybridoma mRNA was extracted and reversely transcripted to cDNA, and the light and heavy chains of the variable fragment of the antibody were amplified using commercial primers. The amplified chains were cloned into pGEM-T Easy vector. Specific primers were designed and used in an amplification and chain linkage strategy, obtaining the scFv, which in turn was cloned into pAE vector. E. coli BL21(DE3)pLys strainwas transformed with pAE scFv-intimin plasmid and subjected to induction of protein expression. Anti-intimin scFv,expressed as inclusion bodies (insoluble fraction), was denatured, purified and submitted to refolding. The proteinyield was 1 mg protein per 100 mL of bacterial culture. To test the functionality of the scFv, ELISA andimmunofluorescence assays were performed, showing that 275 ng of scFv reacted with 2 mg of purified intimin,resulting in an absorbance of 0.75 at 492 nm.


Asunto(s)
Anticuerpos Monoclonales , Escherichia coli Enteropatógena/inmunología , Escherichia coli Enteropatógena/patogenicidad , Hibridomas/inmunología , Técnica del Anticuerpo Fluorescente/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...