Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hepatol Commun ; 6(5): 1140-1156, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34817932

RESUMEN

Induction of neoangiogenesis is a hallmark feature during disease progression of hepatocellular carcinoma (HCC). Antiangiogenetic compounds represent a mainstay of therapeutic approaches; however, development of chemoresistance is observed in the majority of patients. Recent findings suggest that tumor-initiating cells (TICs) may play a key role in acquisition of resistance, but the exact relevance for HCC in this process remains to be defined. Primary and established hepatoma cell lines were exposed to long-term sorafenib treatment to model acquisition of resistance. Treatment effects on TICs were estimated by sphere-forming capacity in vitro, tumorigenicity in vivo, and flow cytometry. Adaptive molecular changes were assessed by whole transcriptome analyses. Compensatory mechanisms of resistance were identified and directly evaluated. Sustained antiproliferative effect following sorafenib treatment was observed in three of six HCC cell lines and was followed by rapid regrowth, thereby mimicking responses observed in patients. Resistant cells showed induction in sphere forming in vitro and tumor-initiating capacity in vivo as well as increased number of side population and epithelial cell adhesion molecule-positive cells. Conversely, sensitive cell lines showed consistent reduction of TIC properties. Gene sets associated with resistance and poor prognosis, including Hippo/yes-associated protein (YAP), were identified. Western blot and immunohistochemistry confirmed increased levels of YAP. Combined treatment of sorafenib and specific YAP inhibitor consistently revealed synergistic antioncogenic effects in resistant cell lines. Conclusion: Resistance to antiangiogenic therapy might be driven by transient expansion of TICs and activation of compensatory pro-oncogenic signaling pathways, including YAP. Specific targeting of TICs might be an effective therapeutic strategy to overcome resistance in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamiento farmacológico , Línea Celular Tumoral , Resistencia a Antineoplásicos , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Sorafenib/farmacología , Proteínas Señalizadoras YAP
2.
EBioMedicine ; 54: 102699, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32330875

RESUMEN

BACKGROUND: The extracellular signal-regulated kinase (ERK) pathway regulates cell growth, and is hyper-activated and associated with drug resistance in hepatocellular carcinoma (HCC). Metabolic pathways are profoundly dysregulated in HCC. Whether an altered metabolic state is linked to activated ERK pathway and drug response in HCC is unaddressed. METHODS: We deprived HCC cells of glutamine to induce metabolic alterations and performed various assays, including metabolomics (with 13C-glucose isotope tracing), microarray analysis, and cell proliferation assays. Glutamine-deprived cells were also treated with kinase inhibitors (e.g. Sorafenib, Erlotinib, U0126 amongst other MEK inhibitors). We performed bioinformatics analysis and stratification of HCC tumour microarrays to determine upregulated ERK gene signatures in patients. FINDINGS: In a subset of HCC cells, the withdrawal of glutamine triggers a severe metabolic alteration and ERK phosphorylation (pERK). This is accompanied by resistance to the anti-proliferative effect of kinase inhibitors, despite pERK inhibition. High intracellular serine is a consistent feature of an altered metabolic state and contributes to pERK induction and the kinase inhibitor resistance. Blocking the ERK pathway facilitates cell proliferation by reprogramming metabolism, notably enhancing aerobic glycolysis. We have identified 24 highly expressed ERK gene signatures that their combined expression strongly indicates a dysregulated metabolic gene network in human HCC tissues. INTERPRETATION: A severely compromised metabolism lead to ERK pathway induction, and primes some HCC cells to pro-survival phenotypes upon ERK pathway blockade. Our findings offer novel insights for understanding, predicting and overcoming drug resistance in liver cancer patients. FUND: DFG, BMBF and Sino-German Cooperation Project.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Resistencia a Antineoplásicos , Neoplasias Hepáticas/metabolismo , Sistema de Señalización de MAP Quinasas , Antineoplásicos/toxicidad , Carcinoma Hepatocelular/genética , Proliferación Celular , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Metaboloma , Inhibidores de Proteínas Quinasas/toxicidad , Transcriptoma
3.
Int J Cancer ; 144(11): 2782-2794, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30485423

RESUMEN

Primary liver cancer (PLC) ranks among the most lethal solid cancers worldwide due to lack of effective biomarkers for early detection and limited treatment options in advanced stages. Development of primary culture models that closely recapitulate phenotypic and molecular diversities of PLC is urgently needed to improve the patient outcome. Long-term cultures of 7 primary liver cancer cell lines of hepatocellular and cholangiocellular origin were established using defined culture conditions. Morphological and histological characteristics of obtained cell lines and xenograft tumors were analyzed and compared to original tumors. Time course analyses of transcriptomic and genomic changes were performed using next-generation sequencing (NGS). Key oncogenic alterations were identified by targeted NGS and cell lines carrying potentially actionable mutations were treated with corresponding specific inhibitors. PDCL fully resembled morphological features of the primary cancers in vitro and in vivo over extended period in culture. Genomic alterations as well as transcriptome profiles showed high similarity with primary tumors and remained stable during long-term culturing. Targeted-NGS confirmed that key oncogenic mutations such as TP53, KRAS, CTNNB1 as well as actionable mutations (e.g. MET, cKIT, KDR) were highly conserved in PDCL and amenable for individualized therapeutic approaches. Integrative genomic and transcriptomic approaches further demonstrated that PDCL more closely resemble molecular and prognostic features of PLC than established cell lines and are valuable tool for direct target evaluation. Our integrative analysis demonstrates that PDCL represents refined model for discovery of relevant molecular subgroups and exploration of precision medicine approaches for the treatment of this deadly disease.


Asunto(s)
Línea Celular Tumoral/patología , Neoplasias Hepáticas/patología , Medicina de Precisión/métodos , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/antagonistas & inhibidores , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinogénesis/genética , Análisis Mutacional de ADN , Perfilación de la Expresión Génica/métodos , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Ratones , Mutación , Cultivo Primario de Células/métodos , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...