Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2309211, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39119859

RESUMEN

Age is a prominent risk factor for cardiometabolic disease, often leading to heart structural and functional changes. However, precise molecular mechanisms underlying cardiac remodeling and dysfunction exclusively resulting from physiological aging remain elusive. Previous research demonstrated age-related functional alterations in baboons, analogous to humans. The goal of this study is to identify early cardiac molecular alterations preceding functional adaptations, shedding light on the regulation of age-associated changes. Unbiased transcriptomics of left ventricle samples are performed from female baboons aged 7.5-22.1 years (human equivalent ≈30-88 years). Weighted-gene correlation network and pathway enrichment analyses are performed, with histological validation. Modules of transcripts negatively correlated with age implicated declined metabolism-oxidative phosphorylation, tricarboxylic acid cycle, glycolysis, and fatty-acid ß-oxidation. Transcripts positively correlated with age suggested a metabolic shift toward glucose-dependent anabolic pathways, including hexosamine biosynthetic pathway (HBP). This shift is associated with increased glycosaminoglycan synthesis, modification, precursor synthesis via HBP, and extracellular matrix accumulation, verified histologically. Upregulated extracellular matrix-induced signaling coincided with glycosaminoglycan accumulation, followed by cardiac hypertrophy-related pathways. Overall, these findings revealed a transcriptional shift in metabolism favoring glycosaminoglycan accumulation through HBP before cardiac hypertrophy. Unveiling this metabolic shift provides potential targets for age-related cardiac diseases, offering novel insights into early age-related mechanisms.

2.
Biosci Rep ; 44(8)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39083072

RESUMEN

Obesity during pregnancy has been escalating, becoming a huge problem that poses consequences not only for the health of the offspring but also for the maternal well-being. Women's adipose and hepatic tissue metabolism undergoes significant changes during the gestational period. During pregnancy, obesity is a primary instigator of steatosis, increasing the risk of non-alcholic fatty liver disease (NAFLD), now recognized under the updated nomenclature metabolic dysfunction-associated steatotic liver disease (MASLD). Pregnant women with obesity present higher levels of free fatty acids and glucose, reduction in insulin sensitivity, and adipose tissue endocrine dysregulation. Furthermore, obesity-induced modifications in clock genes and lipid-associated gene expression within adipose tissue disrupt crucial metabolic adaptations, potentially culminating in adipose tissue dysfunction. Thus, the liver experiences increased exposure to free fatty acids through the portal vein. Higher uptake of free fatty acids into the liver disrupts hepatic lipid oxidation while enhances lipogenesis, thereby predisposing to ectopic fat deposition within the liver. This review focuses on the obesity-induced changes during pregnancy in both liver and adipose tissue metabolism, elucidating how the metabolic crosstalk between these two organs can be dysregulated in pregnant women living with obesity.


Asunto(s)
Tejido Adiposo , Hígado , Obesidad , Complicaciones del Embarazo , Humanos , Femenino , Embarazo , Hígado/metabolismo , Hígado/patología , Obesidad/metabolismo , Obesidad/patología , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Complicaciones del Embarazo/metabolismo , Metabolismo de los Lípidos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Resistencia a la Insulina , Lipogénesis
3.
Biology (Basel) ; 13(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38392289

RESUMEN

Endothelial dysfunction is associated with several lifestyle-related diseases, including cardiovascular and neurodegenerative diseases, and it contributes significantly to the global health burden. Recent research indicates a link between cardiovascular risk factors (CVRFs), excessive production of reactive oxygen species (ROS), mitochondrial impairment, and endothelial dysfunction. Circulating endothelial progenitor cells (EPCs) are recruited into the vessel wall to maintain appropriate endothelial function, repair, and angiogenesis. After attachment, EPCs differentiate into mature endothelial cells (ECs). Like ECs, EPCs are also susceptible to CVRFs, including metabolic dysfunction and chronic inflammation. Therefore, mitochondrial dysfunction of EPCs may have long-term effects on the function of the mature ECs into which EPCs differentiate, particularly in the presence of endothelial damage. However, a link between CVRFs and impaired mitochondrial function in EPCs has hardly been investigated. In this review, we aim to consolidate existing knowledge on the development of mitochondrial and endothelial dysfunction in the vascular endothelium, place it in the context of recent studies investigating the consequences of CVRFs on EPCs, and discuss the role of mitochondrial dysfunction. Thus, we aim to gain a comprehensive understanding of mechanisms involved in EPC deterioration in relation to CVRFs and address potential therapeutic interventions targeting mitochondrial health to promote endothelial function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA