Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sports Med Open ; 9(1): 68, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37528295

RESUMEN

BACKGROUND: The evaluation of health status by cardiopulmonary exercise test (CPET) has shown increasing interest in the paediatric population. Our group recently established reference Z-score values for paediatric cycle ergometer VO2max, applicable to normal and extreme weights, from a cohort of 1141 healthy children. There are currently no validated reference values for the other CPET parameters in the paediatric population. This study aimed to establish, from the same cohort, reference Z-score values for the main paediatric cycle ergometer CPET parameters, apart from VO2max. RESULTS: In this cross-sectional study, 909 healthy children aged 5-18 years old underwent a CPET. Linear, quadratic, and polynomial mathematical regression equations were applied to identify the best CPET parameters Z-scores, according to anthropometric parameters (sex, age, height, weight, and BMI). This study provided Z-scores for maximal CPET parameters (heart rate, respiratory exchange ratio, workload, and oxygen pulse), submaximal CPET parameters (ventilatory anaerobic threshold, VE/VCO2 slope, and oxygen uptake efficiency slope), and maximum ventilatory CPET parameters (tidal volume, respiratory rate, breathing reserve, and ventilatory equivalent for CO2 and O2). CONCLUSIONS: This study defined paediatric reference Z-score values for the main cycle ergometer CPET parameters, in addition to the existing reference values for VO2max, applicable to children of normal and extreme weights. Providing Z-scores for CPET parameters in the paediatric population should be useful in the follow-up of children with various chronic diseases. Thus, new paediatric research fields are opening up, such as prognostic studies and clinical trials using cardiopulmonary fitness outcomes. Trial registration NCT04876209-Registered 6 May 2021-Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT04876209 .

2.
Pathogens ; 9(4)2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32272651

RESUMEN

Mosquito-borne arboviruses are increasing due to human disturbances of natural ecosystems and globalization of trade and travel. These anthropic changes may affect mosquito communities by modulating ecological traits that influence the "spill-over" dynamics of zoonotic pathogens, especially at the interface between natural and human environments. Particularly, the global invasion of Aedes albopictus is observed not only across urban and peri-urban settings, but also in newly invaded areas in natural settings. This could foster the interaction of Ae. albopictus with wildlife, including local reservoirs of enzootic arboviruses, with implications for the potential zoonotic transfer of pathogens. To evaluate the potential of Ae. albopictus as a bridge vector of arboviruses between wildlife and humans, we performed a bibliographic search and analysis focusing on three components: (1) The capacity of Ae. albopictus to exploit natural larval breeding sites, (2) the blood-feeding behaviour of Ae. albopictus, and (3) Ae. albopictus' vector competence for arboviruses. Our analysis confirms the potential of Ae. albopictus as a bridge vector based on its colonization of natural breeding sites in newly invaded areas, its opportunistic feeding behaviour together with the preference for human blood, and the competence to transmit 14 arboviruses.

3.
Viruses ; 11(10)2019 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-31569736

RESUMEN

Mosquitoes are vectors of arboviruses affecting animal and human health. Arboviruses circulate primarily within an enzootic cycle and recurrent spillovers contribute to the emergence of human-adapted viruses able to initiate an urban cycle involving anthropophilic mosquitoes. The increasing volume of travel and trade offers multiple opportunities for arbovirus introduction in new regions. This scenario has been exemplified recently with the Zika pandemic. To incriminate a mosquito as vector of a pathogen, several criteria are required such as the detection of natural infections in mosquitoes. In this study, we used a high-throughput chip based on the BioMark™ Dynamic arrays system capable of detecting 64 arboviruses in a single experiment. A total of 17,958 mosquitoes collected in Zika-endemic/epidemic countries (Brazil, French Guiana, Guadeloupe, Suriname, Senegal, and Cambodia) were analyzed. Here we show that this new tool can detect endemic and epidemic viruses in different mosquito species in an epidemic context. Thus, this fast and low-cost method can be suggested as a novel epidemiological surveillance tool to identify circulating arboviruses.


Asunto(s)
Culicidae/virología , Enfermedades Endémicas , Epidemias , Ensayos Analíticos de Alto Rendimiento/métodos , Infección por el Virus Zika/epidemiología , Virus Zika/aislamiento & purificación , Animales , Infecciones por Arbovirus/transmisión , Infecciones por Arbovirus/virología , Arbovirus/genética , Arbovirus/aislamiento & purificación , Brasil , Cambodia , Vectores de Enfermedades , Monitoreo Epidemiológico , Femenino , Guyana Francesa , Guadalupe , Humanos , Masculino , Epidemiología Molecular , Mosquitos Vectores/virología , Proyectos Piloto , ARN Viral/aislamiento & purificación , Senegal , Suriname , Virus Zika/genética , Infección por el Virus Zika/transmisión
4.
Emerg Microbes Infect ; 7(1): 191, 2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30482898

RESUMEN

The invasive species Aedes albopictus is present in 60% of Brazilian municipalities, including at the interfaces between urban settings and forests that are zoonotic arbovirus hotspots. We investigated Ae. albopictus colonization, adult dispersal and host feeding patterns in the anthropic-natural interface of three forested sites covering three biomes in Brazil in 2016. To evaluate whether an ecological overlap exists between Ae. albopictus and sylvatic yellow fever virus (YFV) in forests, we performed similar investigations in seven additional urban-forest interfaces where YFV circulated in 2017. We found Ae. albopictus in all forested sites. We detected eggs and adults up to 300 and 500 m into the forest, respectively, demonstrating that Ae. albopictus forest colonization and dispersal decrease with distance from the forest edge. Analysis of the host identity in blood-engorged females indicated that they fed mainly on humans and domestic mammals, suggesting rare contact with wildlife at the forest edge. Our results show that Ae. albopictus frequency declines as it penetrates into the forest and highlight its potential role as a bridge vector of zoonotic diseases at the edge of the Brazilian forests studied.


Asunto(s)
Aedes/fisiología , Conducta Alimentaria , Mosquitos Vectores/fisiología , Zoonosis/transmisión , Aedes/virología , Animales , Brasil/epidemiología , Perros , Ecosistema , Femenino , Bosques , Humanos , Mosquitos Vectores/virología , Óvulo , Ratas , Remodelación Urbana , Virus de la Fiebre Amarilla , Zoonosis/epidemiología , Zoonosis/virología
5.
Parasitol Int ; 61(4): 513-9, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22562004

RESUMEN

American tegumentary leishmaniasis (ATL) in Peru is mainly associated with Leishmania (Viannia) peruviana and L. (V.) braziliensis. These parasites are genetically related, and their characterization as distinct species is controversial. Despite their genetic similarity, each species is associated with different clinical manifestations of ATL; L. (V.) peruviana causes only cutaneous leishmaniasis, whereas L. (V.) braziliensis can cause both cutaneous and mucocutaneous leishmaniasis. Because the primary cutaneous lesions caused by infection with these species are indistinguishable, it is necessary to develop a suitable method to differentiate them in order to prevent possible metastasis to oropharyngeal mucosa. In the present study, we investigated the proteolytic profile of L. (V.) peruviana and L. (V.) braziliensis isolates from Peru by zymographic analysis in SDS-PAGE copolymerized with gelatin. Enzymes were characterized according to their pH range of activity and sensitivity to distinct peptidase inhibitors. We observed that L. (V.) peruviana isolates displayed three proteolytic bands with molecular masses ranging from 55 to 80 kDa, whereas L. (V.) braziliensis isolates showed six proteolytic activities between 55 and 130 kDa. Using specific inhibitors, we determined that these proteolytic activities are due to metallopeptidases and present optimal activity between the pH range 5.5 and 10.0. Our results suggest that the expression of metallopeptidases in L. (V.) peruviana and L. (V.) braziliensis isolates from Peru is species-specific.


Asunto(s)
Leishmania/enzimología , Leishmania/genética , Leishmaniasis Cutánea/metabolismo , Metaloproteasas/metabolismo , Animales , Regulación Enzimológica de la Expresión Génica , Humanos , Concentración de Iones de Hidrógeno , Leishmania/clasificación , Leishmaniasis Cutánea/genética , Metaloproteasas/antagonistas & inhibidores , Metaloproteasas/genética , Perú/epidemiología , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...