Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 11: 681131, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34790584

RESUMEN

Co-infection of Mycobacterium tuberculosis and Paracoccidioides brasiliensis, present in 20% in Latin America, is a public health problem due to a lack of adequate diagnosis. These microorganisms are capable of forming biofilms, mainly in immunocompromised patients, which can lead to death due to the lack of effective treatment for both diseases. The present research aims to show for the first time the formation of mixed biofilms of M. tuberculosis and P. brasiliensis (Pb18) in vitro, as well as to evaluate the action of 3'hydroxychalcone (3'chalc) -loaded nanoemulsion (NE) (NE3'chalc) against monospecies and mixed biofilms, the formation of mixed biofilms of M. tuberculosis H37Rv (ATCC 27294), 40Rv (clinical strains) and P. brasiliensis (Pb18) (ATCC 32069), and the first condition of formation (H37Rv +Pb18) and (40Rv + Pb18) and second condition of formation (Pb18 + H37Rv) with 45 days of total formation time under both conditions. The results of mixed biofilms (H37Rv + Pb18) and (40Rv + Pb18), showed an organized network of M. tuberculosis bacilli in which P. brasiliensis yeasts are connected with a highly extracellular polysaccharide matrix. The (Pb18 + H37Rv) showed a dense biofilm with an apparent predominance of P. brasiliensis and fragments of M. tuberculosis. PCR assays confirmed the presence of the microorganisms involved in this formation. The characterization of NE and NE3'chalc displayed sizes from 145.00 ± 1.05 and 151.25 ± 0.60, a polydispersity index (PDI) from 0.20± 0.01 to 0.16± 0.01, and zeta potential -58.20 ± 0.92 mV and -56.10 ± 0.71 mV, respectively. The atomic force microscopy (AFM) results showed lamellar structures characteristic of NE. The minimum inhibitory concentration (MIC) values of 3'hidroxychalcone (3'chalc) range from 0.97- 7.8 µg/mL and NE3'chalc from 0.24 - 3.9 µg/mL improved the antibacterial activity when compared with 3'chalc-free, no cytotoxicity. Antibiofilm assays proved the efficacy of 3'chalc-free incorporation in NE. These findings contribute to a greater understanding of the formation of M. tuberculosis and P. brasiliensis in the mixed biofilm. In addition, the findings present a new possible NE3'chalc treatment alternative for the mixed biofilms of these microorganisms, with a high degree of relevance due to the lack of other treatments for these comorbidities.


Asunto(s)
Mycobacterium tuberculosis , Paracoccidioides , Biopelículas , Humanos , Pruebas de Sensibilidad Microbiana
2.
Int J Nanomedicine ; 16: 1601-1616, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33688181

RESUMEN

INTRODUCTION: Cancer is the second leading cause of death globally and is responsible, where about 1 in 6 deaths in the world. Therefore, there is a need to develop effective antitumor agents that are targeted only to the specific site of the tumor to improve the efficiency of cancer diagnosis and treatment and, consequently, limit the unwanted systemic side effects currently obtained by the use of chemotherapeutic agents. In this context, due to its unique physical and chemical properties of graphene oxide (GO), it has attracted interest in biomedicine for cancer therapy. METHODS: In this study, we report the in vivo application of nanocomposites based on Graphene Oxide (nc-GO) with surface modified with PEG-folic acid, Rhodamine B and Indocyanine Green. In addition to displaying red fluorescence spectra Rhodamine B as the fluorescent label), in vivo experiments were performed using nc-GO to apply Photodynamic Therapy (PDT) and Photothermal Therapy (PTT) in the treatment of Ehrlich tumors in mice using NIR light (808 nm 1.8 W/cm2). RESULTS: This study based on fluorescence images was performed in the tumor in order to obtain the highest concentration of nc-GO in the tumor as a function of time (time after intraperitoneal injection). The time obtained was used for the efficient treatment of the tumor by PDT/PTT. DISCUSSION: The current study shows an example of successful using nc-GO nanocomposites as a theranostic nanomedicine to perform simultaneously in vivo fluorescence diagnostic as well as combined PDT-PTT effects for cancer treatments.


Asunto(s)
Grafito/química , Fotoquimioterapia , Terapia Fototérmica , Nanomedicina Teranóstica , Adsorción , Animales , Benzofuranos/química , Carcinoma de Ehrlich/patología , Carcinoma de Ehrlich/terapia , Humanos , Verde de Indocianina/farmacología , Masculino , Ratones , Nanocompuestos/química , Tamaño de la Partícula , Rodaminas/farmacología , Espectrometría de Fluorescencia , Espectrometría Raman , Electricidad Estática , Carga Tumoral
3.
Sci Total Environ ; 763: 142985, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33127143

RESUMEN

A multilayered iron oxide/reduced graphene oxide (ION-RGO) nanocomposite electrode is reported for the voltammetric sensing of bisphenol-A (BPA). Structural characterizations reveal the nanocomposite features RGO sheets decorated with nanometric spherical ION in a mixture of maghemite and magnetite phases. ITO substrate modified with the ION-RGO multilayered film exhibits strong electrocatalytic effect toward BPA oxidation, which is made possible by Fe(III) catalysts generated at the ION's surface after scanning the electrode potential from below 0 V (vs Ag/AgCl) and followed by the RGO phase conducting the transferred electrons. Under optimized differential pulse voltammetry conditions, the proposed sensor shows three linear working ranges 0.09-1.17 (r2 = 0.999), 1.17-3.81 (r2 = 0.995) and 3.81-8.20 (r2 = 0.998), with the highest sensitivity equaling 7.76 µA cm-2/µmol L-1 and the lowest limit of detection of 15 nmol L-1. A single electrode can be used for at least twenty consecutive runs loosing less than 15% of sensitivity, whereas electrodes fabricated in different bacthes exhibit almost identical perfomances. Determination of BPA in a thermal paper sample shows no difference (at 95% confidence level) between the proposed sensor and HPLC/UV. The sensor is neither influenced by the matrix composition nor by other emerging contaminants.

4.
AAPS PharmSciTech ; 21(4): 125, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32350635

RESUMEN

Sunlight is important to health, but higher exposure to radiation causes early aging of the skin and skin damage that can lead to skin cancers. This study aimed at producing a stable octyl p-methoxycinnamate (OMC)-loaded nanostructured lipid carrier (NLC) sunscreen, which can help in the photoprotective effect. NLC was produced by emulsification-sonication method and these systems were composed of myristyl myristate (MM), caprylic capric triglyceride (CCT), Tween® 80 (TW), and soybean phosphatidylcholine (SP) and characterized by dynamic light scattering (DLS), zeta potential (ZP) measurement, atomic force microscopy (AFM), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and in vitro release studies. Pre-formulation studies were performed changing TW concentrations and no differences were found at concentrations of 1.0 and 2.0%. Two selected formulations were designed and showed an average size of 91.5-131.7, polydispersity index > 0.2, and a negative value of ZP. AFM presented a sphere-like morphology and SEM showed ability to form a thin film. DSC exhibited that the incorporation of OMC promoted reduction of enthalpy due to formation of a more amorphous structure. Drug release shows up to 55.74% and 30.57%, and this difference could be related to the presence of SP in this formulation that promoted a more amorphous structure; the release mechanism study indicated Fickian diffusion and relaxation. Sun protection factor (SPF) evaluation was performed using NLC and presented values around 40, considerably higher than those observed in the literature. The developed formulations provide a beneficial alternative to conventional sunscreen formulations.


Asunto(s)
Cinamatos/síntesis química , Portadores de Fármacos/síntesis química , Lípidos/síntesis química , Nanoestructuras/química , Factor de Protección Solar/métodos , Protectores Solares/síntesis química , Rastreo Diferencial de Calorimetría/métodos , Cinamatos/farmacocinética , Portadores de Fármacos/farmacocinética , Liberación de Fármacos , Lípidos/farmacocinética , Microscopía de Fuerza Atómica/métodos , Microscopía Electrónica de Rastreo/métodos , Tamaño de la Partícula , Protectores Solares/farmacocinética
5.
Future Microbiol ; 15: 21-33, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-32043361

RESUMEN

Aim: This study aimed to evaluate the activity of 2'-hydroxychalcone-loaded in nanoemulsion (NLS + 2'chalc), the cytotoxic effect and toxicity against Paracoccidioides brasiliensis and Paracoccidioides lutzii using a zebrafish model. Materials & methods: Preparation and physical-chemical characterization of nanoemulsion (NLS) and NLS + 2'chalc were performed. MIC and minimum fungicide concentration, cytotoxicity and toxicity were also evaluated in the Danio rerio model. Results: NLS + 2'chalc showed fungicidal activity against Paracoccidioides spp. without cytotoxicity in MRC5 and HepG2 lines. It also had high selectivity index values and no toxicity in the zebrafish model based on MIC values. Conclusion: NLS + 2'chalc is a potential new alternative treatment for paracoccidioidomycosis.


Asunto(s)
Antifúngicos/farmacología , Chalconas/farmacología , Paracoccidioides/efectos de los fármacos , Animales , Línea Celular , Chalconas/química , Emulsiones/farmacología , Fibroblastos/efectos de los fármacos , Células Hep G2 , Humanos , Pruebas de Sensibilidad Microbiana , Modelos Animales , Nanopartículas , Paracoccidioidomicosis/microbiología , Pez Cebra
6.
Nanotechnology ; 30(27): 275701, 2019 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-30893653

RESUMEN

Reduced graphene oxide (rGO) layers are known to be significantly conductive along the basal plane throughout delocalized sp2 domains. Defects present in rGO implies in disordered systems with numerous localized sites, resulting in a charge transport governed mainly by a 2D variable range hopping (VRH) mechanism. These characteristics are observed even in multilayered rGO since the through-plane conduction is expected to be insubstantial. Here, we report on the multilayer assembly of functionalized rGO quantum dots (GQDs) presenting 3D VRH transport that endows elevated charge carrier mobility, ca âˆ¼ 236 cm2 V-1 s-1. Polyelectrolyte-wrapped GQDs were assembled by layer-by-layer technique (LbL), ensuring molecular level thickness control for the formed nanostructures, along with the adjustment of the film transparency (up to 92% in the visible region). The small size and the random distribution of GQDs in the LbL structure are believed to overcome the translational disorder in multilayered films, contributing to a 3D interlayer conduction that enhances the electronic properties. Such high-mobility, transparency-tunable films assembled by a cost-effective method possess interesting features and wide applicability in optoelectronics.

7.
Front Microbiol ; 10: 2995, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32010081

RESUMEN

Graphene oxide (GO) with their interesting properties including thermal and electrical conductivity and antibacterial characteristics have many promising applications in medicine. The prevalence of resistant bacteria is considered a public health problem worldwide, herein, GO has been used as a broad spectrum selective antibacterial agent based on the photothermal therapy (PTT)/photodynamic therapy (PDT) effect. The preparation, characterization, determination of photophysical properties of two different sizes of GO is described. In vitro light dose and concentration-dependent studies were performed using Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria based on the PTT/PDT effect used ultra-low doses (65 mW cm-2) of 630 nm light, to achieve efficient bacterial decontamination. The results show that GO and nanographene oxide (nGO) can sensitize the formation of 1O2 and allow a temperature rise of 55°C to 60°C together nGO and GO to exert combined PTT/PDT effect in the disinfection of gram-positive S. aureus and gram-negative E. coli bacteria. A complete elimination of S. aureus and E. coli bacteria based on GO and nGO is obtained by using a dose of 43-47 J cm-2 for high concentration used in this study, and a dose of around 70 J cm-2 for low dose of GO and nGO. The presence of high concentrations of GO allows the bacterial population of S. aureus and E. coli to be more sensitive to the use of PDT/PTT and the efficiency of S. aureus and E. coli bacteria disinfection in the presence of GO is similar to that of nGO. In human neonatal dermal fibroblast, HDFs, no significant alteration to cell viability was promoted by GO, but in nGO is observed a mild damage in the HDFs cells independent of nGO concentration and light exposure. The unique properties of GO and nGO may be useful for the clinical treatment of disinfection of broad-spectrum antimicrobials. The antibacterial results of PTT and PDT using GO in gram-positive and gram-negative bacteria, using low dose light, allow us to conclude that GO and nGO can be used in dermatologic infections, since the effect on human dermal fibroblasts of this treatment is low compared to the antibacterial effect.

8.
Phys Chem Chem Phys ; 20(41): 26696-26709, 2018 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-30324204

RESUMEN

This study reports on investigation of the magnetic properties of layer-by-layer (LbL) assembled nanofilms comprising polyvinyl alcohol (PVA) and citrate-coated magnetite (cit-MAG) nanoparticles deposited onto silicon (SF sample) and glass (GF sample) substrates. DC magnetization measurements were performed over the temperature range of 4 K to 300 K, in the applied magnetic field range of ±60 kOe. The magnetic data of the as-synthesized cit-MAG nanoparticles (F sample) are also collected for comparison. The three as-fabricated samples reveal perfect superparamagnetic (SPM) behavior only around room temperature; at temperatures lower than 200 K the SPM scaling is not observed and all samples behave as interacting superparamagnetic (ISPM) materials. The evolution from the ISPM to the SPM regime is marked by a steady decrease in the hysteretic properties of all samples, with the temperature-dependence of the coercivity decreasing slower than the T1/2 behavior predicted for non-interacting superparamagnetic particles. The modified Bloch's law used to assess information on nanoparticles' surface spins gives the Bloch's exponent close to 2 (for the F and SF samples) and close to 1 (for the GF sample). Interestingly, the surface spin freezing temperature (Tf) is 8 ± 1 K for all samples. The magnetic behavior of all three samples can be described within the model picture of a core-shell structure for the cit-MAG nanoparticles; the core comprising magnetically-ordered spins whereas the shell behaving as a spin-glass-like system. However, the contribution of the shell magnetism to the effective magnetic properties is much more evident in the GF sample in which magnetic dipole-dipole interaction is three-times weaker than in the SF sample and two times weaker than in the F sample. In contrast, the strong magnetic dipole-dipole interaction in the SF sample affects the surface spins, hindering the onset of magnetically-ordered regions in the nanoparticle's shell, making the surface magnetism contribution negligible. The LbL-fabricated nanofilms herein reported and the presented analysis of their magnetic properties we envisage can support the engineering of magnetic nanofilms for multiple applications.

9.
J Nanosci Nanotechnol ; 18(6): 3908-3915, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29442726

RESUMEN

In this work it was studied the production of nanostructured thin films containing alternating layers of poly(allylamine hydrochloride) (PAH) and bovine serum albumin protein (BSA). It was studied the adsorption processes of these materials onto solid surfaces, which included adsorption kinetics and film growth studies by using UV-Vis spectroscopy. The film morphology, thickness and roughness were studied by using atomic force microscopy (AFM). The AFM results showed that the film presented a globular-like surface morphology and a thickness within the nanoscale, which could be controlled by the number of deposited layers. The roughness and thickness of the film depend on the number of deposited bilayers, where the film roughness increased for films with a number of bilayers up to five, after which the film roughness remained almost constant. This is an indicative that the adsorption and growth processes might occur under two different mechanisms, first under the influence of the substrate (films containing up to five bilayers of PAH/BSA), and second under the influence of the film previously deposited (films containing more than five bilayers of PAH/BSA), respectively.


Asunto(s)
Nanoestructuras , Poliaminas , Albúmina Sérica Bovina , Adsorción , Animales , Bovinos , Microscopía de Fuerza Atómica
10.
Nanotechnology ; 28(49): 495711, 2017 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-28985189

RESUMEN

Graphene is a breakthrough 2D material due to its unique mechanical, electrical, and thermal properties, with considerable responsiveness in real applications. However, the coverage of large areas with pristine graphene is a challenge and graphene derivatives have been alternatively exploited to produce hybrid and composite materials that allow for new developments, considering also the handling of large areas using distinct methodologies. For electronic applications there is significant interest in the investigation of the electrical properties of graphene derivatives and related composites to determine whether the characteristic 2D charge transport of pristine graphene is preserved. Here, we report a systematic study of the charge transport mechanisms of reduced graphene oxide chemically functionalized with sodium polystyrene sulfonate (PSS), named as GPSS. GPSS was produced either as quantum dots (QDs) or nanoplatelets (NPLs), being further nanostructured with poly(diallyldimethylammonium chloride) through the layer-by-layer (LbL) assembly to produce graphene nanocomposites with molecular level control. Current-voltage (I-V) measurements indicated a meticulous growth of the LbL nanostructures onto gold interdigitated electrodes (IDEs), with a space-charge-limited current dominated by a Mott-variable range hopping mechanism. A 2D intra-planar conduction within the GPSS nanostructure was observed, which resulted in effective charge carrier mobility (µ) of 4.7 cm2 V-1 s-1 for the QDs and 34.7 cm2 V-1 s-1 for the NPLs. The LbL assemblies together with the dimension of the materials (QDs or NPLs) were favorably used for the fine tuning and control of the charge carrier mobility inside the LbL nanostructures. Such 2D charge conduction mechanism and high µ values inside an interlocked multilayered assembly containing graphene-based nanocomposites are of great interest for organic devices and functionalization of interfaces.

11.
Nanomedicine ; 12(8): 2439-2448, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27431054

RESUMEN

Needle-free immunization strategies have been sought for years. Transcutaneous immunization using electroporation has been studied, but the high electrical voltage that must be applied may be painful and cause irreversible cell damage. The application of a weak electric field, such as in iontophoresis, has never been attempted. The aim of this work was to verify the potential of employing iontophoresis for transcutaneous immunization using ovalbumin (OVA) as a model antigen. To target the antigen presenting cells that are located in the viable epidermis, a vaccine formulation composed of OVA-loaded liposomes and silver nanoparticles (NPAg) was developed. In vitro cathodal iontophoresis of the OVA-liposomes associated with NPAg increased OVA penetration into the viable epidermis by 92-fold in comparison to passive delivery. In vivo, transcutaneous immunization with a suitable combination of liposome and iontophoresis induced the production of antibodies, differentiation of immune-competent cells and appeared to present an alternative strategy for needle-free vaccination.


Asunto(s)
Inmunización/métodos , Iontoforesis , Nanopartículas , Administración Cutánea , Ovalbúmina , Vacunación
12.
J Nanosci Nanotechnol ; 16(6): 6535-9, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27427748

RESUMEN

Studies on sonochemical hydrolysis of cellulose have been suggested as an alternative route to obtaining cellulose nanoparticles. In this work, the potential use of acid hydrolysis assisted by sonication to obtain cellulose whiskers was studied. Parameters such as acid concentration, hydrolysis time and temperature were investigated to evaluate their effect on the morphological properties of the nanowhiskers, as compared to the conventional extraction process by acid hydrolysis with mechanical stirring. Morphology and degree of crystallinity of the nanowhiskers were studied by atomic force microscopy (AFM) and X-ray diffraction (XRD). Results indicated that the extraction time was reduced from about 45 min to less than 3 min using the same acid concentration and temperature used in conventional acid hydrolysis treatment. Likewise, it was possible, within the range of 30 min, to extract whiskers at room temperature or using half the concentration of acid by raising the temperature to about 80 degrees C. These are promising results towards a more economically viable and ecologically friendly extraction procedure used to obtain cellulose nanowhiskers, since both extraction time and acid concentration, used in nanowhisker extraction, were significantly reduced by replacing mechanical with sonochemical stirring.


Asunto(s)
Celulosa/química , Celulosa/aislamiento & purificación , Nanoestructuras , Sonicación , Hidrólisis , Cinética
13.
Sci Rep ; 6: 18464, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26725938

RESUMEN

This manuscript reports on the interaction between (2)F5/2→(2)F7/2 radiative transition from Yb(3+) ions and localized surface plasmon resonance (from gold/silver nanoparticles) in a tungsten-tellurite glass. Such an interaction, similar to the down-conversion process, results in the Yb(3+) emission in the near-infrared region via resonant and non-resonant energy transfers. We associated such effects with the dynamic coupling described by the variations generated by the Hamiltonian HDC in either the oscillator strength, or the local crystal field, i.e. the line shape changes in the emission band. Here, the Yb(3+) ions emission is achieved through plasmon-photon coupling, observable as an enhancement or quenching in the luminescence spectra. Metallic nanoparticles have light-collecting capability in the visible spectrum and can accumulate almost all the photon energy on a nanoscale, which enable the excitation and emission of the Yb(3+) ions in the near-infrared region. This plasmon-photon conversion was evaluated from the cavity's quality factor (Q) and the coupling (g) between the nanoparticles and the Yb(3+) ions. We have found samples of low-quality cavities and strong coupling between the nanoparticles and the Yb(3+) ions. Our research can be extended towards the understanding of new plasmon-photon converters obtained from interactions between rare-earth ions and localized surface plasmon resonance.

14.
Sensors (Basel) ; 15(4): 9592-609, 2015 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-25912354

RESUMEN

Electronic devices based on organic thin-film transistors (OTFT) have the potential to supply the demand for portable and low-cost gadgets, mainly as sensors for in situ disease diagnosis and environment monitoring. For that reason, poly(3-hexylthiophene) (P3HT) as the active layer in the widely-used bottom-gate/bottom-contact OTFT structure was deposited over highly-doped silicon substrates covered with thermally-grown oxide to detect vapor-phase compounds. A ten-fold organochloride and ammonia sensitivity compared to bare sensors corroborated the application of this semiconducting polymer in sensors. Furthermore, P3HT TFTs presented approximately three-order higher normalized sensitivity than any chemical sensor addressed herein. The results demonstrate that while TFTs respond linearly at the lowest concentration values herein, chemical sensors present such an operating regime mostly above 2000 ppm. Simultaneous alteration of charge carrier mobility and threshold voltage is responsible for pushing the detection limit down to units of ppm of ammonia, as well as tens of ppm of alcohol or ketones. Nevertheless, P3HT transistors and chemical sensors could compose an electronic nose operated at room temperature for a wide range concentration evaluation (1-10,000 ppm) of gaseous analytes. Targeted analytes include not only biomarkers for diseases, such as uremia, cirrhosis, lung cancer and diabetes, but also gases for environment monitoring in food, cosmetic and microelectronics industries.

15.
Phys Chem Chem Phys ; 15(45): 19853-61, 2013 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-24145704

RESUMEN

Multilayered nanocomposite films (thickness 50-90 nm) of cobalt ferrite nanoparticles (np-CoFe2O4, 18 nm) were deposited on top of interdigitated microelectrodes by the layer-by-layer technique in order to study their dielectric properties. For that purpose, two different types of nanocomposite films were prepared by assembling np-CoFe2O4 either with poly(3,4-ethylenedioxy thiophene):poly(styrene sulfonic acid) or with polyaniline and sulfonated lignin. Despite the different film architectures, the morphology of both was dominated by densely-packed layers of nanoparticles surrounded by polyelectrolytes. The dominant effect of np-CoFe2O4 was also observed after impedance spectroscopy measurements, which revealed that dielectric behavior of the nanocomposites was largely influenced by the charge transport across nanoparticle-polyelectrolyte interfaces. For example, nanocomposites containing np-CoFe2O4 exhibited a single low-frequency relaxation process, with time constants exceeding 15 ms. At 1 kHz, the dielectric constant and the dissipation factor (tan δ) of these nanocomposites were 15 and 0.15, respectively. These values are substantially inferior to those reported for pressed pellets made exclusively of similar nanoparticles. Impedance data were further fitted with equivalent circuit models from which individual contributions of particle's bulk and interfaces to the charge transport within the nanocomposites could be evaluated. The present study evidences that such nanocomposites display a dielectric behavior dissimilar from that exhibited by their individual counterparts much likely due to enlarged nanoparticle-polyelectrolyte interfaces.


Asunto(s)
Cobalto/química , Compuestos Férricos/química , Nanocompuestos/química , Nanopartículas/química , Impedancia Eléctrica , Electrodos , Transporte de Electrón
16.
Int J Mol Sci ; 14(7): 12953-69, 2013 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-23797657

RESUMEN

We report on optimized architectures containing layer-by-layer (LbL) films of natural rubber latex (NRL), carboxymethyl-chitosan (CMC) and magnetite (Fe3O4) nanoparticles (MNPs) deposited on flexible substrates, which could be easily bent by an external magnetic field. The mechanical response depended on the number of deposited layers and was explained semi-quantitatively with a fully atomistic model, where the LbL film was represented as superposing layers of hexagonal graphene-like atomic arrangements deposited on a stiffer substrate. The bending with no direct current or voltage being applied to a supramolecular structure containing biocompatible and antimicrobial materials represents a proof-of-principle experiment that is promising for tissue engineering applications in biomedicine.


Asunto(s)
Campos Magnéticos , Nanopartículas , Materiales Biocompatibles/química , Nanopartículas/química
17.
J Dent ; 40(4): 265-75, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22265989

RESUMEN

OBJECTIVES: To conduct a controlled study contrasting titanium surface topography after procedures that simulated 10 years of brushing using toothpastes with or without fluoride. METHODS: Commercially pure titanium (cp Ti) and Ti-6Al-4V disks (6 mm Ø×4 mm) were mirror-polished and treated according to 6 groups (n=6) as a function of immersion (I) or brushing (B) using deionised water (W), fluoride-free toothpaste (T) and fluoride toothpaste (FT). Surface topography was evaluated at baseline (pretreatment) and post-treatment, using atomic force microscope in order to obtain three-dimensional images and mean roughness. Specimens submitted to immersion were submerged in the vehicles without brushing. For brushed specimens, procedures were conducted using a linear brushing machine with a soft-bristled toothbrush. Immersion and brushing were performed for 244 h. IFT and BFT samples were analysed under scanning electron microscope with Energy-Dispersive X-ray Spectroscopy (EDS). Pre and post-treatment values were compared using the paired Student T-test (α=.05). Intergroup comparisons were conducted using one-way ANOVA with Tukey post-test (α=.05). RESULTS: cp Ti mean roughness (in nanometers) comparing pre and post-treatment were: IW, 2.29±0.55/2.33±0.17; IT, 2.24±0.46/2.02±0.38; IFT, 2.22±0.53/1.95±0.36; BW, 2.22±0.42/3.76±0.45; BT, 2.27±0.55/16.05±3.25; BFT, 2.27±0.51/22.39±5.07. Mean roughness (in nanometers) measured in Ti-6Al-4V disks (pre/post-treatment) were: IW, 1.79±0.25/2.01±0.25; IT, 1.61±0.13/1.74±0.19; IFT, 1.92±0.39/2.29±0.51; BW, 2.00±0.71/2.05±0.43; BT, 2.37±0.86/11.17±2.29; BFT, 1.83±0.50/15.73±1.78. No significant differences were seen after immersions (p>.05). Brushing increased the roughness of cp Ti and of Ti-6Al-4V (p<.01); cp Ti had topographic changes after BW, BT and BFT treatments whilst Ti-6Al-4V was significantly different only after BT and BTF. EDS has not detected fluoride or sodium ions on metal surfaces. CONCLUSIONS: Exposure to toothpastes (immersion) does not affect titanium per se; their use during brushing affects titanium topography and roughness. The associated effects of toothpaste abrasives and fluorides seem to increase roughness on titanium brushed surfaces.


Asunto(s)
Cariostáticos/química , Materiales Dentales/química , Fluoruros/química , Titanio/química , Cepillado Dental/métodos , Pastas de Dientes/química , Aleaciones , Óxido de Aluminio/química , Compuestos Inorgánicos de Carbono/química , Aleaciones Dentales/química , Pulido Dental/métodos , Diamante/química , Humanos , Imagenología Tridimensional , Ensayo de Materiales , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Compuestos de Silicona/química , Dióxido de Silicio/química , Espectrometría por Rayos X , Propiedades de Superficie , Factores de Tiempo , Cepillado Dental/instrumentación , Agua/química
18.
Phys Chem Chem Phys ; 13(48): 21233-42, 2011 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-22025281

RESUMEN

The paper reports on the successful use of the quartz crystal microbalance technique to assess accurate kinetics and equilibrium parameters regarding the investigation of in situ adsorption of nanosized cobalt ferrite particles (CoFe(2)O(4)--10.5 nm-diameter) onto two different surfaces. Firstly, a single layer of nanoparticles was deposited onto the surface provided by the gold-coated quartz resonator functionalized with sodium 3-mercapto propanesulfonate (3-MPS). Secondly, the layer-by-layer (LbL) technique was used to build multilayers in which the CoFe(2)O(4) nanoparticle-based layer alternates with the sodium sulfonated polystyrene (PSS) layer. The adsorption experiments were conducted by modulating the number of adsorbed CoFe(2)O(4)/PSS bilayers (n) and/or by changing the CoFe(2)O(4) nanoparticle concentration while suspended as a stable colloidal dispersion. Adsorption of CoFe(2)O(4) nanoparticles onto the 3-MPS-functionalized surface follows perfectly a first order kinetic process in a wide range (two orders of magnitude) of nanoparticle concentrations. These data were used to assess the equilibrium constant and the adsorption free energy. Alternatively, the Langmuir adsorption constant was obtained while analyzing the isotherm data at the equilibrium. Adsorption of CoFe(2)O(4) nanoparticles while growing multilayers of CoFe(2)O(4)/PSS was conducted using colloidal suspensions with CoFe(2)O(4) concentration in the range of 10(-8) to 10(-6) (moles of cobalt ferrite per litre) and for different numbers of cycles n = 1, 3, 5, and 10. We found the adsorption of CoFe(2)O(4) nanoparticles within the CoFe(2)O(4)/PSS bilayers perfectly following a first order kinetic process, with the characteristic rate constant growing with the increase of CoFe(2)O(4) nanoparticle concentration and decreasing with the rise of the number of LbL cycles (n). Additionally, atomic force microscopy was employed for assessing the LbL film roughness and thickness. We found the film thickness increasing from about 20 to 120 nm while shifting from 3 to 10 CoFe(2)O(4)/PSS bilayers, using the 8.9 × 10(-6) (moles of cobalt ferrite per litre) suspension.


Asunto(s)
Cobalto/química , Compuestos Férricos/química , Nanopartículas del Metal/química , Tecnicas de Microbalanza del Cristal de Cuarzo , Adsorción , Ácidos Alcanesulfónicos/química , Coloides/química , Cinética , Poliestirenos/química
19.
J Nanosci Nanotechnol ; 9(11): 6620-6, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19908574

RESUMEN

One major challenge for the widespread application of direct methanol fuel cells (DMFCs) is to decrease the amount of platinum used in the electrodes, which has motivated a search for novel electrodes containing platinum nanoparticles. In this study, platinum nanoparticles were electrodeposited on layer-by-layer (LbL) films from TiO2 and poly(vinyl sulfonic) (PVS), by immersing the films into a H2PtCl6 solution and applying a 100 microA current during different electrodeposition times. Scanning tunnel microscopy (STM) and atomic force microscopy (AFM) images showed increased platinum particle size and electrode roughness for increasing electrodeposition times. The potentiodynamic profile of the electrodes indicated that oxygen-like species in 0.5 mol L(-1) H2SO4 were formed at less positive potentials for the smallest platinum particles. Electrochemical impedance spectroscopy measurements confirmed the high reactivity for the water dissociation and the large amount of oxygen-like species adsorbed on the smallest platinum nanoparticles. This high oxophilicity of the smallest nanoparticles was responsible for the electrocatalytic activity of Pt-TiO2/PVS systems for methanol electrooxidation, according to the Langmuir-Hinshelwood bifunctional mechanism. Significantly, the approach used here combining platinum electrodeposition and LbL matrices allows one to both control the particle size and optimize methanol electrooxidation, being therefore promising for producing membrane-electrode assemblies of DMFCs.

20.
J Nanosci Nanotechnol ; 4(5): 548-52, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15503441

RESUMEN

The dynamic scale theory and fractal concepts are employed in the characterization of surface morphological properties of layer-by-layer (LBL) films from poly(o-methoxyaniline) (POMA) alternated with poly(vinyl sulfonic acid) (PVS). The fractal dimensions are found to depend on the procedures to fabricate the POMA/PVS multilayers, particularly with regard to the drying procedures. LBL films obtained via drying in ambient air show a more homogeneous surface, compared to films dried under vacuum or a flow of nitrogen, due to a uniform rearrangement of polymer molecules during solvent evaporation.


Asunto(s)
Compuestos de Anilina/química , Cristalización/métodos , Fractales , Sustancias Macromoleculares/química , Membranas Artificiales , Polivinilos/química , Ácidos Sulfónicos/química , Absorción , Ensayo de Materiales , Microscopía de Fuerza Atómica , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...