Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(12): 6977-6993, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38808668

RESUMEN

The replicative helicase, DnaB, is a central component of the replisome and unwinds duplex DNA coupled with immediate template-dependent DNA synthesis by the polymerase, Pol III. The rate of helicase unwinding is dynamically regulated through structural transitions in the DnaB hexamer between dilated and constricted states. Site-specific mutations in DnaB enforce a faster more constricted conformation that dysregulates unwinding dynamics, causing replisome decoupling that generates excess ssDNA and induces severe cellular stress. This surplus ssDNA can stimulate RecA recruitment to initiate recombinational repair, restart, or activation of the transcriptional SOS response. To better understand the consequences of dysregulated unwinding, we combined targeted genomic dnaB mutations with an inducible RecA filament inhibition strategy to examine the dependencies on RecA in mitigating replisome decoupling phenotypes. Without RecA filamentation, dnaB:mut strains had reduced growth rates, decreased mutagenesis, but a greater burden from endogenous damage. Interestingly, disruption of RecA filamentation in these dnaB:mut strains also reduced cellular filamentation but increased markers of double strand breaks and ssDNA gaps as detected by in situ fluorescence microscopy and FACS assays, TUNEL and PLUG, respectively. Overall, RecA plays a critical role in strain survival by protecting and processing ssDNA gaps caused by dysregulated helicase activity in vivo.


Asunto(s)
Replicación del ADN , ADN de Cadena Simple , AdnB Helicasas , Mutación , Rec A Recombinasas , Rec A Recombinasas/metabolismo , Rec A Recombinasas/genética , ADN de Cadena Simple/metabolismo , AdnB Helicasas/metabolismo , AdnB Helicasas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Polimerizacion , Proteínas de Unión al ADN
2.
Methods ; 204: 160-171, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34758393

RESUMEN

Helicase enzymes translocate along an RNA or DNA template with a defined polarity to unwind, separate, or remodel duplex strands for a variety of genome maintenance processes. Helicase mutations are commonly associated with a variety of diseases including aging, cancer, and neurodegeneration. Biochemical characterization of these enzymes has provided a wealth of information on the kinetics of unwinding and substrate preferences, and several high-resolution structures of helicases alone and bound to oligonucleotides have been solved. Together, they provide mechanistic insights into the structural translocation and unwinding orientations of helicases. However, these insights rely on structural inferences derived from static snapshots. Instead, continued efforts should be made to combine structure and kinetics to better define active translocation orientations of helicases. This review explores many of the biochemical and biophysical methods utilized to map helicase binding orientation to DNA or RNA substrates and includes several time-dependent methods to unequivocally map the active translocation orientation of these enzymes to better define the active leading and trailing faces.


Asunto(s)
Ácidos Nucleicos , ADN/química , ADN Helicasas/química , Replicación del ADN , Ácidos Nucleicos/genética , ARN/genética
3.
PLoS Genet ; 17(11): e1009886, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34767550

RESUMEN

Helicase regulation involves modulation of unwinding speed to maintain coordination of DNA replication fork activities and is vital for replisome progression. Currently, mechanisms for helicase regulation that involve interactions with both DNA strands through a steric exclusion and wrapping (SEW) model and conformational shifts between dilated and constricted states have been examined in vitro. To better understand the mechanism and cellular impact of helicase regulation, we used CRISPR-Cas9 genome editing to study four previously identified SEW-deficient mutants of the bacterial replicative helicase DnaB. We discovered that these four SEW mutations stabilize constricted states, with more fully constricted mutants having a generally greater impact on genomic stress, suggesting a dynamic model for helicase regulation that involves both excluded strand interactions and conformational states. These dnaB mutations result in increased chromosome complexities, less stable genomes, and ultimately less viable and fit strains. Specifically, dnaB:mut strains present with increased mutational frequencies without significantly inducing SOS, consistent with leaving single-strand gaps in the genome during replication that are subsequently filled with lower fidelity. This work explores the genomic impacts of helicase dysregulation in vivo, supporting a combined dynamic regulatory mechanism involving a spectrum of DnaB conformational changes and relates current mechanistic understanding to functional helicase behavior at the replication fork.


Asunto(s)
Cromosomas Bacterianos , AdnB Helicasas/metabolismo , Escherichia coli/genética , Inestabilidad Genómica , Sistemas CRISPR-Cas , ADN Bacteriano/química , ADN Bacteriano/genética , AdnB Helicasas/química , AdnB Helicasas/genética , Escherichia coli/enzimología , Mutación
5.
Chem Res Toxicol ; 34(3): 675-677, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33508200

RESUMEN

DNA damage and mutations are a major primary cause of cancer. Chemical bombardment of DNA is a major contributor to DNA damage. The Division of Chemical Toxicology recently hosted a panel of researchers who provided updates on the field of chemical toxicology at the nexus of DNA damage and repair.


Asunto(s)
Aductos de ADN/efectos adversos , ADN de Neoplasias/efectos de los fármacos , Neoplasias/inducido químicamente , Daño del ADN , Reparación del ADN , ADN de Neoplasias/genética , Humanos , Neoplasias/genética
6.
Chem Res Toxicol ; 34(3): 672-674, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33355440

RESUMEN

As COVID-19 swept across the world, it created a global pandemic and an unpredictable and challenging job market. This article discusses the future of the 2020-2021 job market in both academia and industry in the midst and aftermath of this pandemic.


Asunto(s)
Biofarmacia/economía , COVID-19/economía , Industria Química/economía , Universidades/economía , Biofarmacia/organización & administración , Biofarmacia/tendencias , COVID-19/epidemiología , Industria Química/organización & administración , Humanos , Pandemias , Investigación/economía , Investigación/organización & administración , SARS-CoV-2 , Red Social , Desempleo , Universidades/organización & administración , Recursos Humanos
7.
Bio Protoc ; 10(12): e3649, 2020 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-33659320

RESUMEN

The orientation of a DNA-binding protein bound on DNA is determinative in directing the assembly of other associated proteins in the complex for enzymatic action. As an example, in a replisome, the orientation of the DNA helicase at the replication fork directs the assembly of the other associated replisome proteins. We have recently determined the orientation of Saccharalobus solfataricus (Sso) Minichromosome maintenance (MCM) helicase at a DNA fork utilizing a site-specific DNA cleavage and mapping assay. Here, we describe a detailed protocol for site-specific DNA footprinting using 4-azidophenacyl bromide (APB). This method provides a straightforward, biochemical method to reveal the DNA binding orientation of SsoMCM helicase and can be applied to other DNA binding proteins.

8.
Enzymes ; 45: 183-223, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31627877

RESUMEN

Hexameric DNA helicases involved in the separation of duplex DNA at the replication fork have a universal architecture but have evolved from two separate protein families. The consequences are that the regulation, translocation polarity, strand specificity, and architectural orientation varies between phage/bacteria to that of archaea/eukaryotes. Once assembled and activated for single strand DNA translocation and unwinding, the DNA polymerase couples tightly to the helicase forming a robust replisome complex. However, this helicase-polymerase interaction can be challenged by various forms of endogenous or exogenous agents that can stall the entire replisome or decouple DNA unwinding from synthesis. The consequences of decoupling can be severe, leading to a build-up of ssDNA requiring various pathways for replication fork restart. All told, the hexameric helicase sits prominently at the front of the replisome constantly responding to a variety of obstacles that require transient unwinding/reannealing, traversal of more stable blocks, and alternations in DNA unwinding speed that regulate replisome progression.


Asunto(s)
ADN Helicasas/metabolismo , Replicación del ADN , ADN de Cadena Simple/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , ADN/biosíntesis , ADN/química , Complejos Multienzimáticos/metabolismo , ADN/metabolismo , ADN de Cadena Simple/química
9.
Elife ; 82019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31661075

RESUMEN

DNA replication requires that the duplex genomic DNA strands be separated; a function that is implemented by ring-shaped hexameric helicases in all Domains. Helicases are composed of two domains, an N- terminal DNA binding domain (NTD) and a C- terminal motor domain (CTD). Replication is controlled by loading of helicases at origins of replication, activation to preferentially encircle one strand, and then translocation to begin separation of the two strands. Using a combination of site-specific DNA footprinting, single-turnover unwinding assays, and unique fluorescence translocation monitoring, we have been able to quantify the binding distribution and the translocation orientation of Saccharolobus (formally Sulfolobus) solfataricus MCM on DNA. Our results show that both the DNA substrate and the C-terminal winged-helix (WH) domain influence the orientation but that translocation on DNA proceeds N-first.


Asunto(s)
ADN Helicasas/metabolismo , Replicación del ADN , ADN de Archaea/metabolismo , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Sulfolobus solfataricus/enzimología , Sulfolobus solfataricus/metabolismo , Unión Proteica , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA