RESUMEN
BACKGROUND AND AIMS: Gigantism is a key component of the domestication syndrome, a suite of traits that differentiates crops from their wild relatives. Allometric gigantism is strongly marked in horticultural crops, causing disproportionate increases in the size of edible parts such as stems, leaves or fruits. Tomato (Solanum lycopersicum) has attracted attention as a model for fruit gigantism, and many genes have been described controlling this trait. However, the genetic basis of a corresponding increase in size of vegetative organs contributing to isometric gigantism has remained relatively unexplored. METHODS: Here, we identified a 0.4-Mb region on chromosome 7 in introgression lines (ILs) from the wild species Solanum pennellii in two different tomato genetic backgrounds (cv. 'M82' and cv. 'Micro-Tom') that controls vegetative and reproductive organ size in tomato. The locus, named ORGAN SIZE (ORG), was fine-mapped using genotype-by-sequencing. A survey of the literature revealed that ORG overlaps with previously mapped quantitative trait loci controlling tomato fruit weight during domestication. KEY RESULTS: Alleles from the wild species led to lower cell number in different organs, which was partially compensated by greater cell expansion in leaves, but not in fruits. The result was a proportional reduction in leaf, flower and fruit size in the ILs harbouring the alleles from the wild species. CONCLUSIONS: Our findings suggest that selection for large fruit during domestication also tends to select for increases in leaf size by influencing cell division. Since leaf size is relevant for both source-sink balance and crop adaptation to different environments, the discovery of ORG could allow fine-tuning of these parameters.
Asunto(s)
Gigantismo , Solanum lycopersicum , Solanum , Solanum lycopersicum/genética , Tamaño de los Órganos/genética , Gigantismo/genética , Sitios de Carácter Cuantitativo/genética , Solanum/genética , Frutas/genéticaRESUMEN
Allelic variation in the CETS (CENTRORADIALIS, TERMINAL FLOWER 1, SELF PRUNING) gene family controls agronomically important traits in many crops. CETS genes encode phosphatidylethanolamine-binding proteins that have a central role in the timing of flowering as florigenic and anti-florigenic signals. The great expansion of CETS genes in many species suggests that the functions of this family go beyond flowering induction and repression. Here, we characterized the tomato SELF PRUNING 3C (SP3C) gene, and show that besides acting as a flowering repressor it also regulates seed germination and modulates root architecture. We show that loss of SP3C function in CRISPR/Cas9-generated mutant lines increases root length and reduces root side branching relative to the wild type. Higher SP3C expression in transgenic lines promotes the opposite effects in roots, represses seed germination, and also improves tolerance to water stress in seedlings. These discoveries provide new insights into the role of SP paralogs in agronomically relevant traits, and support future exploration of the involvement of CETS genes in abiotic stress responses.
Asunto(s)
Sequías , Germinación , Germinación/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fosfatidiletanolaminas , Semillas/genética , Semillas/metabolismoRESUMEN
Auxin is an important hormone playing crucial roles during fruit growth and ripening; however, the metabolic impact of changes in auxin signalling during tomato (Solanum lycopersicum L.) ripening remains unclear. Here, we investigated the significance of changes in auxin signalling during different stages of fruit development by analysing changes in tomato fruit quality and primary metabolism using mutants with either lower or higher auxin sensitivity [diageotropica (dgt) and entire mutants, respectively]. Altered auxin sensitivity modifies metabolism, through direct impacts on fruit respiration and fruit growth. We verified that the dgt mutant plants exhibit reductions in fruit set, total fruit dry weight, fruit size, number of seeds per fruit, and fresh weight loss during post-harvest. Sugar accumulation was associated with delayed fruit ripening in dgt, probably connected with reduced ethylene levels and respiration, coupled with a lower rate of starch degradation. In contrast, despite exhibiting parthenocarpy, increased auxin perception (entire) did not alter fruit ripening, leading to only minor changes in primary metabolism. By performing a comprehensive analysis, our results connect auxin signalling and metabolic changes during tomato fruit development, indicating that reduced auxin signalling led to extensive changes in sugar concentration and starch metabolism during tomato fruit ripening.
Asunto(s)
Solanum lycopersicum , Ciclofilinas/genética , Etilenos/metabolismo , Frutas , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Almidón/metabolismo , Azúcares/metabolismoRESUMEN
Creating crops with resistance to drought, soil salinity and insect damage, that simultaneously have higher nutritional quality, is challenging to conventional breeding due to the complex and diffuse genetic basis of those traits. Recent advances in gene editing technology, such as base editors and prime-editing, coupled with a deeper understanding of the genetic basis of domestication delivered by the analysis of crop 'pangenomes', open the exciting prospect of creating novel crops via manipulation of domestication-related genes in wild species. A de novo domestication platform may allow rapid and precise conversion of crop wild relatives into crops, while retaining many of the valuable resilience and nutritional traits left behind during domestication and breeding. Using the Solanaceae family as case in point, we discuss how such a knowledge-driven pipeline could be exploited to contribute to food security over the coming decades.
Asunto(s)
Domesticación , Fitomejoramiento , Productos Agrícolas/genética , Edición Génica , Valor NutritivoRESUMEN
Plastids are organelles responsible for essential aspects of plant development, including carbon fixation and synthesis of several secondary metabolites. Chloroplast differentiation and activity are highly regulated by light, and several proteins involved in these processes have been characterised. Such is the case of the GOLDEN 2-LIKE (GLK) transcription factors, which induces the expression of genes related to chloroplast differentiation and photosynthesis. The tomato (Solanum lycopersicum) genome harbours two copies of this gene, SlGLK1 and SlGLK2, each with distinct expression patterns. While the former predominates in leaves, the latter is mainly expressed in fruits, precisely at the pedicel region. During tomato domestication, the selection of fruits with uniform ripening fixed the mutation Slglk2, nowadays present in most cultivated varieties, what penalised fruit metabolic composition. In this study, we investigated how SlGLK2 is regulated by light, auxin and cytokinin and determined the effect of SlGLK2 on tocopherol (vitamin E) and sugar metabolism, which are components of the fruit nutritional and industrial quality. To achieve this, transcriptional profiling and biochemical analysis were performed throughout fruit development and ripening from SlGLK2, Slglk2, SlGLK2-overexpressing genotypes, as well as from phytochrome and hormonal deficient mutants. The results revealed that SlGLK2 expression is regulated by phytochrome-mediated light perception, yet this gene can induce chloroplast differentiation even in a phytochrome-independent manner. Moreover, auxin was found to be a negative regulator of SlGLK2 expression, while SlGLK2 enhances cytokinin responsiveness. Additionally, SlGLK2 enhanced chlorophyll content in immature green fruits, leading to an increment in tocopherol level in ripe fruits. Finally, SlGLK2 overexpression resulted in higher total soluble solid content, possibly by the regulation of sugar metabolism enzyme-encoding genes. The results obtained here shed light on the regulatory network that interconnects SlGLK2, phytohormones and light signal, promoting the plastidial activity and consequently, influencing the quality of tomato fruit.
Asunto(s)
Frutas/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Luz , Proteínas de Plantas/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Clorofila/genética , Clorofila/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Frutas/genética , Regulación de la Expresión Génica , Solanum lycopersicum/genética , Mutación , Proteínas de Plantas/genética , Factores de Transcripción/genéticaRESUMEN
Auxin modulates a range of plant developmental processes including embryogenesis, organogenesis, and shoot and root development. Recent studies have shown that plant hormones also strongly influence metabolic networks, which results in altered growth phenotypes. Modulating auxin signalling pathways may therefore provide an opportunity to alter crop performance. Here, we performed a detailed physiological and metabolic characterization of tomato (Solanum lycopersicum) mutants with either increased (entire) or reduced (diageotropica-dgt) auxin signalling to investigate the consequences of altered auxin signalling on photosynthesis, water use, and primary metabolism. We show that reduced auxin sensitivity in dgt led to anatomical and physiological modifications, including altered stomatal distribution along the leaf blade and reduced stomatal conductance, resulting in clear reductions in both photosynthesis and water loss in detached leaves. By contrast, plants with higher auxin sensitivity (entire) increased the photosynthetic capacity, as deduced by higher Vcmax and Jmax coupled with reduced stomatal limitation. Remarkably, our results demonstrate that auxin-sensitive mutants (dgt) are characterized by impairments in the usage of starch that led to lower growth, most likely associated with decreased respiration. Collectively, our findings suggest that mutations in different components of the auxin signalling pathway specifically modulate photosynthetic and respiratory processes.
Asunto(s)
Ácidos Indolacéticos/metabolismo , Mitocondrias/metabolismo , Fotosíntesis/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal , Solanum lycopersicum/crecimiento & desarrollo , Clorofila/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiología , Hojas de la Planta/anatomía & histología , Estomas de Plantas/fisiología , Transducción de Señal/fisiología , Agua/metabolismoRESUMEN
Breeding of crops over millennia for yield and productivity has led to reduced genetic diversity. As a result, beneficial traits of wild species, such as disease resistance and stress tolerance, have been lost. We devised a CRISPR-Cas9 genome engineering strategy to combine agronomically desirable traits with useful traits present in wild lines. We report that editing of six loci that are important for yield and productivity in present-day tomato crop lines enabled de novo domestication of wild Solanum pimpinellifolium. Engineered S. pimpinellifolium morphology was altered, together with the size, number and nutritional value of the fruits. Compared with the wild parent, our engineered lines have a threefold increase in fruit size and a tenfold increase in fruit number. Notably, fruit lycopene accumulation is improved by 500% compared with the widely cultivated S. lycopersicum. Our results pave the way for molecular breeding programs to exploit the genetic diversity present in wild plants.
RESUMEN
Light signaling and plant hormones, particularly ethylene and auxins, have been identified as important regulators of carotenoid biosynthesis during tomato fruit ripening. However, whether and how the light and hormonal signaling cascades crosstalk to control this metabolic route remain poorly elucidated. Here, the potential involvement of ethylene and auxins in the light-mediated regulation of tomato fruit carotenogenesis was investigated by comparing the impacts of light treatments and the light-hyperresponsive high pigment-2 (hp2) mutation on both carotenoid synthesis and hormonal signaling. Under either light or dark conditions, the overaccumulation of carotenoids in hp2 ripening fruits was associated with disturbed ethylene production, increased expression of genes encoding master regulators of ripening and higher ethylene sensitivity and signaling output. The increased ethylene sensitivity observed in hp2 fruits was associated with the differential expression of genes encoding ethylene receptors and downstream signaling transduction elements, including the downregulation of the transcription factor ETHYLENE RESPONSE FACTOR.E4, a repressor of carotenoid synthesis. Accordingly, treatments with exogenous ethylene promoted carotenoid biosynthetic genes more intensively in hp2 than in wild-type fruits. Moreover, the loss of HP2 function drastically altered auxin signaling in tomato fruits, resulting in higher activation of the auxin-responsive promoter DR5, severe down-regulation of AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) genes and altered accumulation of AUXIN RESPONSE FACTOR (ARF) transcripts. Both tomato ARF2 paralogues (Sl-ARF2a and SlARF2b) were up-regulated in hp2 fruits, which agrees with the promotive roles played by these ARFs in tomato fruit ripening and carotenoid biosynthesis. Among the genes differentially expressed in hp2 fruits, the additive effect of light treatment and loss of HP2 function was particularly evident for those encoding carotenoid biosynthetic enzymes, ethylene-related transcription factors, Aux/IAAs and ARFs. Altogether, the data uncover the involvement of ethylene and auxin as part of the light signaling cascades controlling tomato fruit metabolism and provide a new link between light signaling, plant hormone sensitivity and carotenoid metabolism in ripening fruits.
RESUMEN
KEY MESSAGE: A seed maturation protein gene (CaSMP) from Coffea arabica is expressed in the endosperm of yellow/green fruits. The CaSMP promoter drives reporter expression in the seeds of immature tomato fruits. In this report, an expressed sequence tag-based approach was used to identify a seed-specific candidate gene for promoter isolation in Coffea arabica. The tissue-specific expression of the cognate gene (CaSMP), which encodes a yet uncharacterized coffee seed maturation protein, was validated by RT-qPCR. Additional expression analysis during coffee fruit development revealed higher levels of CaSMP transcript accumulation in the yellow/green phenological stage. Moreover, CaSMP was preferentially expressed in the endosperm and was down-regulated during water imbibition of the seeds. The presence of regulatory cis-elements known to be involved in seed- and endosperm-specific expression was observed in the CaSMP 5'-upstream region amplified by genome walking (GW). Additional histochemical analysis of transgenic tomato (cv. Micro-Tom) lines harboring the GW-amplified fragment (~ 1.4 kb) fused to uidA reporter gene confirmed promoter activity in the ovule of immature tomato fruits, while no activity was observed in the seeds of ripening fruits and in the other organs/tissues examined. These results indicate that the CaSMP promoter can be used to drive transgene expression in coffee beans and tomato seeds, thus representing a promising biotechnological tool.
Asunto(s)
Coffea/metabolismo , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Semillas/metabolismo , Solanum lycopersicum/metabolismo , Coffea/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/genética , Semillas/genéticaRESUMEN
Plants are sessile organisms that must perceive and respond to various environmental constraints throughout their life cycle. Among these constraints, drought stress has become the main limiting factor to crop production around the world. Water deprivation is perceived primarily by the roots, which efficiently signal the shoot to trigger drought responses in order to maximize a plant's ability to survive. In this study, the tomato (Solanum lycopersicum L.) mutant procera (pro), with a constitutive response to gibberellin (GA), and its near isogenic line cv. Micro-Tom (MT), were used in reciprocal grafting under well-watered and water stress conditions to evaluate the role of GA signaling in root-to-shoot communication during drought stress. Growth, oxidative stress, gene expression, water relations and hormonal content were measured in order to provide insights into GA-mediated adjustments to water stress. All graft combinations with pro (i.e. pro/pro, MT/pro and pro/MT) prevented the reduction of growth under stress conditions without a reduction in oxidative stress. The increase of oxidative stress was followed by upregulation of SlDREB2, a drought-tolerance related gene, in all drought-stressed plants. Scions harboring the pro mutation tended to increase the abscisic acid (ABA) content, independent of the rootstock. Moreover, the GA sensitivity of the rootstock modulated stomatal conductance and water use efficiency under drought stress, indicating GA and ABA crosstalk in the adjustment of growth and water economy.
Asunto(s)
Sequías , Giberelinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/metabolismo , Solanum lycopersicum/fisiología , Regulación de la Expresión Génica , Solanum lycopersicum/genética , Proteínas de Plantas/metabolismo , Brotes de la Planta/metabolismoRESUMEN
Phytochomes and plant hormones have been emerging as important regulators of fleshy fruit biology and quality traits; however, the relevance of phytochrome-hormonal signaling crosstalk in controlling fruit development and metabolism remains elusive. Here, we show that the deficiency in phytochrome chromophore phytochromobilin (PΦB) biosynthesis inhibits sugar accumulation in tomato (Solanum lycopersicum) fruits by transcriptionally downregulating sink- and starch biosynthesis-related enzymes, such as cell-wall invertases, sucrose transporters and ADP-glucose pyrophosphorylases. PΦB deficiency was also shown to repress fruit chloroplast biogenesis, which implicates more limited production of photoassimilates via fruit photosynthesis. Genetic and physiological data revealed the involvement of auxins and cytokinins in mediating the negative impact of PΦB deficiency on fruit sink strength and chloroplast formation. PΦB deficiency was shown to transcriptionally repress type-A TOMATO RESPONSE REGULATORs and AUXIN RESPONSE FACTORs both in pericarp and columella, suggesting active phytochrome-hormonal signaling crosstalk in these tissues. Data also revealed that PΦB deficiency influences fruit ripening by delaying the climacteric rise in ethylene production and signaling. Altogether, the data uncover the impact of phytochromobilin deficiency in fine-tuning sugar metabolism, chloroplast formation and the timing of fruit ripening and also reveal a link between auxins, cytokinins and phytochromes in regulating sugar import and accumulation in fruits.
Asunto(s)
Biliverdina/análogos & derivados , Redes y Vías Metabólicas , Solanum lycopersicum/genética , Azúcares/metabolismo , Biliverdina/deficiencia , Cloroplastos/metabolismo , Citocininas/metabolismo , Regulación hacia Abajo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Transcripción GenéticaRESUMEN
The transition from flowering to fruit production, namely fruit set, is crucial to ensure successful sexual plant reproduction. Although studies have described the importance of hormones (i.e. auxin and gibberellins) in controlling fruit set after pollination and fertilization, the role of microRNA-based regulation during ovary development and fruit set is still poorly understood. Here we show that the microRNA159/GAMYB1 and -2 pathway (the miR159/GAMYB1/2 module) is crucial for tomato ovule development and fruit set. MiR159 and SlGAMYBs were expressed in preanthesis ovaries, mainly in meristematic tissues, including developing ovules. SlMIR159-overexpressing tomato cv. Micro-Tom plants exhibited precocious fruit initiation and obligatory parthenocarpy, without modifying fruit shape. Histological analysis showed abnormal ovule development in such plants, which led to the formation of seedless fruits. SlGAMYB1/2 silencing in SlMIR159-overexpressing plants resulted in misregulation of pathways associated with ovule and female gametophyte development and auxin signalling, including AINTEGUMENTA-like genes and the miR167/SlARF8a module. Similarly to SlMIR159-overexpressing plants, SlGAMYB1 was downregulated in ovaries of parthenocarpic mutants with altered responses to gibberellins and auxin. SlGAMYBs likely contribute to fruit initiation by modulating auxin and gibberellin responses, rather than their levels, during ovule and ovary development. Altogether, our results unveil a novel function for the miR159-targeted SlGAMYBs in regulating an agronomically important trait, namely fruit set.
Asunto(s)
Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Solanum lycopersicum/genética , Factores de Transcripción/metabolismo , Regulación hacia Abajo , Flores/citología , Flores/genética , Flores/crecimiento & desarrollo , Frutas/citología , Frutas/genética , Frutas/crecimiento & desarrollo , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/citología , Solanum lycopersicum/crecimiento & desarrollo , Óvulo Vegetal/citología , Óvulo Vegetal/genética , Óvulo Vegetal/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polinización , ARN de Planta/genética , Factores de Transcripción/genéticaRESUMEN
Glandular trichomes are structures with widespread distribution and deep ecological significance. In the Solanum genus, type-IV glandular trichomes provide resistance to insect pests. The occurrence of these structures is, however, poorly described and controversial in cultivated tomato (Solanum lycopersicum). Optical and scanning electron microscopy were used to screen a series of well-known commercial tomato cultivars, revealing the presence of type-IV trichomes on embryonic (cotyledons) and juvenile leaves. A tomato line overexpressing the microRNA miR156, known to promote heterochronic development, and mutants affecting KNOX and CLAVATA3 genes possessed type-IV trichomes in adult leaves. A re-analysis of the Woolly (Wo) mutant, previously described as enhancing glandular trichome density, showed that this effect only occurs at the juvenile phase of vegetative development. Our results suggest the existence of at least two levels of regulation of multicellular trichome formation in tomato: one enhancing different types of trichomes, such as that controlled by the WOOLLY gene, and another dependent on developmental stage, which is fundamental for type-IV trichome formation. Their combined manipulation could represent an avenue for biotechnological engineering of trichome development in plants.
Asunto(s)
Solanum lycopersicum/genética , Tricomas/genética , MicroARNs/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
Plant responses to the environment and microorganisms, including arbuscular mycorrhizal fungi, involve complex hormonal interactions. It is known that abscisic acid (ABA) and ethylene may be involved in the regulation of arbuscular mycorrhiza (AM) and that part of the detrimental effects of ABA deficiency in plants is due to ethylene overproduction. In this study, we aimed to determine whether the low susceptibility to mycorrhizal colonization in ABA-deficient mutants is due to high levels of ethylene and whether AM development is associated with changes in the steady-state levels of transcripts of genes involved in the biosynthesis of ethylene and ABA. For that, tomato (Solanum lycopersicum) ethylene overproducer epinastic (epi) mutant and the ABA-deficient notabilis (not) and sitiens (sit) mutants, in the same Micro-Tom (MT) genetic background, were inoculated with Rhizophagus clarus, and treated with the ethylene biosynthesis inhibitor aminoethoxyvinylglycine (AVG). The development of AM, as well as the steady-state levels of transcripts involved in ethylene (LeACS2, LeACO1 and LeACO4) and ABA (LeNCED) biosynthesis, was determined. The intraradical colonization in epi, not and sit mutants was significantly reduced compared to MT. The epi mutant completely restored the mycorrhizal colonization to the levels of MT with the application of 10 µM of AVG, probably due to the inhibition of the ACC synthase gene expression. The steady-state levels of LeACS2 and LeACO4 transcripts were induced in mycorrhizal roots of MT, whereas the steady-state levels of LeACO1 and LeACO4 transcripts were significantly induced in sit, and the steady-state levels of LeNCED transcripts were significantly induced in all genotypes and in mycorrhizal roots of epi mutants treated with AVG. The reduced mycorrhizal colonization in sit mutants seems not to be limited by ethylene production via ACC oxidase regulation. Both ethylene overproduction and ABA deficiency impaired AM fungal colonization in tomato roots, indicating that, besides hormonal interactions, a fine-tuning of each hormone level is required for AM development.
Asunto(s)
Ácido Abscísico/metabolismo , Etilenos/metabolismo , Hongos/crecimiento & desarrollo , Micorrizas/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Ácido Abscísico/biosíntesis , Aminoácido Oxidorreductasas/antagonistas & inhibidores , Etilenos/biosíntesis , Glicina/análogos & derivados , Glicina/farmacología , Liasas/antagonistas & inhibidores , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología , Micorrizas/metabolismo , Raíces de Plantas/microbiologíaRESUMEN
The ideotype is a theoretical model of an archetypal cultivated plant. Recent progress in genome editing is aiding the pursuit of this ideal in crop breeding. Breeding is relatively straightforward when the traits in question are monogenic in nature and show Mendelian inheritance. Conversely, traits with a diffuse, polygenic basis such as abiotic stress resistance are more difficult to harness. In recent years, many genes have been identified that are important for plant domestication and act by increasing yield, grain or fruit size or altering plant architecture. Here, we propose that (a) key monogenic traits whose physiology has been unveiled can be molecularly tailored to achieve the ideotype; and (b) wild relatives of crops harboring polygenic stress resistance genes or other traits of interest could be de novo domesticated by manipulating monogenic yield-related traits through state-of-the-art gene editing techniques. An overview of the genomic and physiological challenges in the world's main staple crops is provided. We focus on tomato and its wild Solanum (section Lycopersicon) relatives as a suitable model for molecular design in the pursuit of the ideotype for elite cultivars and to test de novo domestication of wild relatives.
Asunto(s)
Productos Agrícolas/genética , Domesticación , Edición Génica , Genes de Plantas , Genoma de Planta , Plantas Modificadas Genéticamente , Solanum lycopersicum/genética , Agricultura , Cruzamiento , Sistemas CRISPR-Cas , Frutas , Genómica , Herencia Multifactorial , Sitios de Carácter CuantitativoRESUMEN
Programmed cell death (PCD) plays a key role in plant responses to pathogens, determining the success of infection depending on the pathogen lifestyle and on which participant of the interaction triggers cell death. The hemibiotrophic basidiomycete Moniliophthora perniciosa is the causal agent of witches' broom disease of Theobroma cacao L. (cacao), a serious constraint for production in South America and the Caribbean. It has been hypothesized that M. perniciosa pathogenesis involves PCD, initially as a plant defence mechanism, which is diverted by the fungus to induce necrosis during the dikaryotic phase of the mycelia. Here, we evaluated whether the expression of a cacao anti-apoptotic gene would affect the incidence and severity of M. perniciosa infection using the 'Micro-Tom' (MT) tomato as a model. The cacao Bax-inhibitor-1 (TcBI-1) gene, encoding a putative basal attenuator of PCD, was constitutively expressed in MT to evaluate function. Transformants expressing TcBI-1, when treated with tunicamycin, an inducer of endoplasmic reticulum stress, showed a decrease in cell peroxidation. When the same transformants were inoculated with the necrotrophic fungal pathogens Sclerotinia sclerotiorum, Sclerotium rolfsii and Botrytis cinerea, a significant reduction in infection severity was observed, confirming TcBI-1 function. After inoculation with M. perniciosa, TcBI-1 transformant lines showed a significant reduction in disease incidence compared with MT. The overexpression of TcBI-1 appears to affect the ability of germinating spores to penetrate susceptible tissues, restoring part of the non-host resistance in MT against the S-biotype of M. perniciosa.
Asunto(s)
Basidiomycota/fisiología , Cacao/genética , Genes de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología , Secuencia de Aminoácidos , Secuencia de Bases , Caulimovirus/genética , Resistencia a la Enfermedad , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Transformación GenéticaRESUMEN
A standard protocol to evaluate the effects of biostimulants on plant physiology is still lacking. The proton pumps present in the vacuolar and plasma membranes are the primary agents responsible for the regulation of the electrochemical gradient that energizes the nutrient uptake system and acid growth mechanism of plant cells. In this study, two of these enzymes were characterized as biochemical markers of biostimulant activity. A simple and fast protocol based on the degree of root acidification using a pH sensitive dye and the Micro-Tom tomato as a plant model is proposed as an efficient methodology to prove the efficacy of biostimulants that are claimed to improve nutrient acquisition and root growth. The results agree with the data from more conventional, expensive and time-consuming proton pump assays. A direct correlation was found between plasmalemma proton-adenosine triphosphatase (H+-ATPase) activation and the amount of rhizosphere acidification observed in the bromocresol gel. Moreover, roots of the diageotropica (dgt) Micro-Tom plants, defective in auxin responses, barely acidify bromocresol purple gel even in the presence of indole-3-acetic acid (IAA, 1 M). The biostimulant TEA (vermicompost water extract, 25 %) enhances proton extrusion by 40 % in wild type (WT) plants, but no effect was induced in dgt plants. These results reinforce the notion that the class of biostimulant known as humic substances stimulates plant proton pumps and promotes root growth by exerting an auxin-like bioactivity and establish the usefulness of an economically and technically feasible assay to certify this kind of biostimulant.(AU)
Asunto(s)
Biomarcadores/análisis , Rizosfera , Acidificación/análisis , Fenómenos Fisiológicos de las PlantasRESUMEN
A standard protocol to evaluate the effects of biostimulants on plant physiology is still lacking. The proton pumps present in the vacuolar and plasma membranes are the primary agents responsible for the regulation of the electrochemical gradient that energizes the nutrient uptake system and acid growth mechanism of plant cells. In this study, two of these enzymes were characterized as biochemical markers of biostimulant activity. A simple and fast protocol based on the degree of root acidification using a pH sensitive dye and the Micro-Tom tomato as a plant model is proposed as an efficient methodology to prove the efficacy of biostimulants that are claimed to improve nutrient acquisition and root growth. The results agree with the data from more conventional, expensive and time-consuming proton pump assays. A direct correlation was found between plasmalemma proton-adenosine triphosphatase (H+-ATPase) activation and the amount of rhizosphere acidification observed in the bromocresol gel. Moreover, roots of the diageotropica (dgt) Micro-Tom plants, defective in auxin responses, barely acidify bromocresol purple gel even in the presence of indole-3-acetic acid (IAA, 1 M). The biostimulant TEA (vermicompost water extract, 25 %) enhances proton extrusion by 40 % in wild type (WT) plants, but no effect was induced in dgt plants. These results reinforce the notion that the class of biostimulant known as humic substances stimulates plant proton pumps and promotes root growth by exerting an auxin-like bioactivity and establish the usefulness of an economically and technically feasible assay to certify this kind of biostimulant.
Asunto(s)
Acidificación/análisis , Biomarcadores/análisis , Fenómenos Fisiológicos de las Plantas , RizosferaRESUMEN
Tocopherol, a compound with vitamin E (VTE) activity, is a conserved constituent of the plastidial antioxidant network in photosynthetic organisms. The synthesis of tocopherol involves the condensation of an aromatic head group with an isoprenoid prenyl side chain. The latter, phytyl diphosphate, can be derived from chlorophyll phytol tail recycling, which depends on phytol kinase (VTE5) activity. How plants co-ordinate isoprenoid precursor distribution for supplying biosynthesis of tocopherol and other prenyllipids in different organs is poorly understood. Here, Solanum lycopersicum plants impaired in the expression of two VTE5-like genes identified by phylogenetic analyses, named SlVTE5 and SlFOLK, were characterized. Our data show that while SlFOLK does not affect tocopherol content, the production of this metabolite is >80% dependent on SlVTE5 in tomato, in both leaves and fruits. VTE5 deficiency greatly impacted lipid metabolism, including prenylquinones, carotenoids, and fatty acid phytyl esters. However, the prenyllipid profile greatly differed between source and sink organs, revealing organ-specific metabolic adjustments in tomato. Additionally, VTE5-deficient plants displayed starch accumulation and lower CO2 assimilation in leaves associated with mild yield penalty. Taken together, our results provide valuable insights into the distinct regulation of isoprenoid metabolism in leaves and fruits and also expose the interaction between lipid and carbon metabolism, which results in carbohydrate export blockage in the VTE5-deficient plants, affecting tomato fruit quality.
Asunto(s)
Vías Biosintéticas , Regulación hacia Abajo , Metabolismo de los Lípidos , Especificidad de Órganos , Proteínas de Plantas/metabolismo , Solanum lycopersicum/enzimología , Tocoferoles/metabolismo , Vías Biosintéticas/genética , Metabolismo de los Hidratos de Carbono/genética , Clorofila/metabolismo , Regulación hacia Abajo/genética , Ésteres/metabolismo , Frutas/metabolismo , Gases/metabolismo , Regulación de la Expresión Génica de las Plantas , Técnicas de Silenciamiento del Gen , Genes de Plantas , Metabolismo de los Lípidos/genética , Solanum lycopersicum/genética , Mutación/genética , Fotosíntesis/genética , Complejo de Proteína del Fotosistema II/metabolismo , Fitol/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Prenilación , Interferencia de ARN , Solubilidad , Almidón/metabolismoRESUMEN
Auxin governs dynamic cellular processes involved at several stages of plant growth and development. In this review, we discuss the mechanisms employed by auxin in light of recent scientific advances, with a focus on synthetic auxins as herbicides and synthetic auxin resistance mechanisms. Two auxin receptors were reported. The plasma membrane receptor ABP1 (Auxin Binding Protein 1) alters the structure and arrangement of actin filaments and microtubules, leading to plant epinasty and reducing peroxisomes and mitochondria mobility in the cell environment. The second auxin receptor is the gene transcription pathway regulated by the SCFTir/AFB ubiquitination complex, which destroys transcription repressor proteins that interrupt Auxin Response Factor (ARF) activation. As a result mRNA related with Abscisic Acid (ABA) and ethylene are transcribed, producing high quantities of theses hormones. Their associated action leads to high production of Reactive Oxygen Species (ROS), leading to tissue and plant death. Recently, another ubiquitination pathway which is described as a new auxin signaling route is the F-box protein S-Phase Kinase-Associated Protein 2A (SKP2A). It is active in cell division regulation and there is evidence that auxin herbicides can deregulate the SKP2A pathway, which leads to severe defects in plant development. In this discussion, we propose that SFCSKP2A auxin binding site alteration could be a new auxinic herbicide resistance mechanism, a concept which may contribute to the current progress in plant biology in its quest to clarify the many questions that still surround auxin herbicide mechanisms of action and the mechanisms of weed resistance.(AU)