RESUMEN
Cultured neurons obtained from MAP1B-deficient mice have a delay in axon outgrowth and a reduced rate of axonal elongation compared with neurons from wild-type mice. Here we show that MAP1B deficiency results in a significant decrease in Rac1 and cdc42 activity and a significant increase in Rho activity. We found that MAP1B interacted with Tiam1, a guanosine nucleotide exchange factor for Rac1. The decrease in Rac1/cdc42 activity was paralleled by decreases in the phosphorylation of the downstream effectors of these proteins, such as LIMK-1 and cofilin. The expression of a constitutively active form of Rac1, cdc42, or Tiam1 rescued the axon growth defect of MAP1B-deficient neurons. Taken together, these observations define a new and crucial function of MAP1B that we show to be required for efficient cross-talk between microtubules and the actin cytoskeleton during neuronal polarization.
Asunto(s)
Axones/enzimología , Proteínas Asociadas a Microtúbulos/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Animales , Axones/efectos de los fármacos , Axones/metabolismo , Citocalasina D/farmacología , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Cinética , Quinasas Lim/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/deficiencia , Modelos Biológicos , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rhoA/metabolismoRESUMEN
In this study, we have used a combination of biochemical and molecular biology techniques to demonstrate that the C-terminal tail domain of KIF4 directly interacts with P0, a major protein component of ribosomes. Besides, in dorsal root ganglion neurons, KIF4 and P0, as well as other ribosomal constituents, colocalize in clusters distributed along axons and neuritic tips. RNA interference suppression of KIF4 or expression of KIF4 variants lacking the tail domain or mutations of the ATP-binding site result in accumulation of P0 and other ribosomal proteins at the cell body and in their disappearance from axons. Our results also show one additional function for KIF4 involving an Ezrin-Radixin-Moesin-like domain in the second coiled-coiled region of KIF4. Expression of a KIF4 mutant lacking this domain abolishes the clustering of ribosomal constituents and prevents the anterograde translocation of the cell adhesion molecule L1. Taken together, the present results suggest that by binding to P0 through its tail domain and by using its motor activity, KIF4 is involved in the anterograde trafficking of ribosomal constituents to axons and that by means of its Ezrin-Radixin-Moesin-like domain interacts and transports L1.
Asunto(s)
Transporte Axonal , Axones/metabolismo , Cinesinas/metabolismo , Ribosomas/metabolismo , Animales , Células Cultivadas , Femenino , Ganglios Espinales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Cinesinas/genética , Masculino , Ratones , Mutación/genética , Unión Proteica , Transporte de Proteínas , Interferencia de ARN , RatasRESUMEN
In this study, we examined the subcellular distribution and functions of LIMK1 in developing neurons. Confocal microscopy, subcellular fractionation, and expression of several epitope-tagged LIMK1 constructs revealed that LIMK1 is enriched in the Golgi apparatus and growth cones, with the LIM domain required for Golgi localization and the PDZ domain for its presence at neuritic tips. Overexpression of wild-type LIMK1 suppresses the formation of trans-Golgi derived tubules, and prevents cytochalasin D-induced Golgi fragmentation, whereas that of a kinase-defective mutant has the opposite effect. Transfection of wild-type LIMK1 accelerates axon formation and enhances the accumulation of Par3/Par6, insulin-like growth factor (IGF)1 receptors, and neural cell adhesion molecule (NCAM) at growth cones, while inhibiting the Golgi export of synaptophysin-containing vesicles. These effects were dependent on the Golgi localization of LIMK1, paralleled by an increase in cofilin phosphorylation and phalloidin staining in the region of the Golgi apparatus, and prevented by coexpression of constitutive active cofilin. The long-term overexpression of LIMK1 produces growth cone collapse and axon retraction, an effect that is dependent on its growth cone localization. Together, our results suggest an important role for LIMK1 in axon formation that is related with its ability to regulate Golgi dynamics, membrane traffic, and actin cytoskeletal organization.