Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dent J (Basel) ; 12(3)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38534271

RESUMEN

The materials used in dentistry for the fabrication of all-ceramic restorations have undergone great and rapid developments over the last two decades. Among the most common ceramic materials in dentistry are those based on zirconium and lithium disilicate. Due to the properties of these materials, they are in great demand in the field of dental restoration production. Thus, dental restorations that will use those materials are commonly machined in CAD/CAM systems, which offer the possibility of manufacturing all-ceramic dental restorations in a very short period of time. This article reviews the modern materials in the field of all-ceramic dental restorations, their manufacturing processes, as well as what determines which ceramic materials are used for the production of CAD/CAM blanks and their production technology.

2.
Antibiotics (Basel) ; 13(2)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38391561

RESUMEN

The surface adhesion of bacterial cells and the in vivo biocompatibility of a new ceramic-metal composite made of zirconium dioxide and tantalum were evaluated. Within the framework of an in vitro study using the crystal violet staining and colony counting methods, a relatively similar adhesion of Streptococcus oralis to the 3Y-TZP/Ta biocermet (roughness Ra = 0.12 ± 0.04 µm) and Ti-Al6-V4 titanium alloy (Ra = 0.04 ± 0.01 µm) was found. In addition, in an in vivo preliminary study focused on the histological analysis of a series of rods implanted in the jaws of beagle dogs for a six-month period, the absence of any fibrous tissue or inflammatory reaction at the interface between the implanted 3Y-TZP/Ta biocermets and the new bone was found. Thus, it can be concluded that the developed ceramic-metal biocomposite may be a promising new material for use in dentistry.

3.
Materials (Basel) ; 16(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38068070

RESUMEN

Statistical analysis of mechanical properties of thin-walled samples (~500 microns) obtained by selective laser melting from AlSi10Mg material and subjected to heat treatment for 1 h at temperatures from 260 °C to 440 °C (step of aging temperature change 30 °C) has shown that the maximum strain hardening in the stretching diagram section from yield strength to tensile strength is achieved at the heat treatment temperature equal to 290 °C. At carrying out of correlation analysis, a statistically significant positive correlation between deformation corresponding to yield strength and the sum of heights of the largest protrusions and depths of the largest depressions of the surface roughness profile within the basic length of the sample (Rz) and the full height of the surface roughness profile (Rmax) was established. It was found that the reason for the correlation is the presence of cohesive states between the extreme values of the surface roughness profile that persist along the entire length of the specimen.

4.
Materials (Basel) ; 16(23)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38068127

RESUMEN

The development of dental implantology is based on the detailed study of the interaction of implants with the surrounding tissues and methods of osteogenesis stimulation around implants, which has been confirmed by the increasing number of scientific publications presenting the results of studies related to both the influence of the chemical composition of dental implant material as well as the method of its surface modification on the key operational characteristics of implants. The main materials for dental implant manufacturing are Ti and its alloys, stainless steels, Zr alloys (including ceramics based on ZrO2), and Ta and its alloys, as well as other materials (ceramics based on Al2O3, Si3N4, etc.). The review presents alloy systems recommended for use in clinical practice and describes their physical-mechanical and biochemical properties. However, when getting into the body, the implants are subjected to various kinds of mechanical influences, which are aggravated by the action of an aggressive biological environment (electrolyte with a lot of Cl- and H+); it can lead to the loss of osteointegration and to the appearance of the symptoms of the general intoxication of the organism because of the metal ions released from the implant surface into the biological tissues of the organism. Since the osteointegration and biocompatibility of implants depend primarily on the properties of their surface layer (it is the implant surface that makes contact with the tissues of the body), the surface modification of dental implants plays an important role, and all methods of surface modification can be divided into mechanical, physical, chemical, and biochemical methods (according to the main effect on the surface). This review discusses several techniques for modifying dental implant surfaces and provides evidence for their usefulness.

5.
Gels ; 9(9)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37754362

RESUMEN

Within this work, new aerogels based on graphene oxide are proposed to adsorb salicylic acid (SA) and herbicide 2,4-Dichlorophenoxyacetic acid (2,4-D) from aqueous media. Graphene oxide aerogel (GOA) and reduced graphene oxide aerogel (rGOA) were obtained by freeze-drying processes and then studied by Raman spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), and Brunauer-Emmett-Teller (BET) analysis. The influence of contact time and the concentration of the adsorbates were also assessed. It was found that equilibrium for high adsorption is reached in 150 min. In a single system, the pseudo-first-order, pseudo-second-order kinetic models, Intraparticle diffusion, and Elovich models were used to discuss the detail of the aerogel adsorbing pollutant. Moreover, the Langmuir, Freundlich, and Temkin adsorption models were applied to describe the equilibrium isotherms and calculate the isotherm constants.

6.
Materials (Basel) ; 16(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37297062

RESUMEN

Coatings with a thickness from ~40 to ~50 µm on Ti6Al4V titanium alloys were formed by plasma electrolytic oxidation (PEO) in a silicate-hypophosphite electrolyte with the addition of graphene oxide. The PEO treatment was carried out in the anode-cathode mode (50 Hz) at a ratio of anode and cathode currents of 1:1; their sum density was 20 A/dm2, and the treatment's duration was 30 min. The effect of the graphene oxide's concentration in the electrolyte on the thickness, roughness, hardness, surface morphology, structure, composition, and tribological characteristics of the PEO coatings was studied. Wear experiments, under dry conditions, were carried out in a ball-on-disk tribotester with an applied load of 5 N, a sliding speed of 0.1 m·s-1, and a sliding distance of 1000 m. According to the obtained results, the addition of graphene oxide (GO) into the base silicate-hypophosphite electrolyte leads to a slight decrease in the coefficient of friction (from 0.73 to 0.69) and a reduction in the wear rate by more than 1.5 times (from 8.04 to 5.2 mm3/N·m), with an increase in the GO's concentration from 0 to 0.5 kg/m3, respectively. This occurs due to the formation of a GO-containing lubricating tribolayer upon contact with the coating of the counter-body in the friction pair. Delamination of the coatings during wear occurs due to contact fatigue; with an increase in the concentration of GO in the electrolyte from 0 to 0.5 kg/m3, this process slows down by more than four times.

7.
Materials (Basel) ; 16(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36837299

RESUMEN

In this paper, a mathematical model for the description of the failure probability of filament and fused deposition modeling (FDM)-printed products is considered. The model is based on the results of tensile tests of filament samples made of polyacrylonitrile butadiene styrene (ABS), polylactide (PLA), and composite PLA filled with alumina (Al2O3) as well after FDM-printed products of "spatula" type. The application of probabilistic methods of fracture analysis revealed that the main contribution to the reduction of fracture probability is made by the elastic and plastic stages of the fracture curve under static loading. Particle distribution analysis of Al2O3 combined with fracture probability analysis shows that particle size distributions on the order of 10-5 and 10-6 mm decrease the fracture probability of the sample, whereas uniform particle size distributions on the order of 10-1 and 10-2 mm do not change the distribution probability. The paper shows that uneven distribution of Al2O3 fillers in composite samples made using FDM printing technology leads to brittle fracture of the samples.

8.
Materials (Basel) ; 15(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36499897

RESUMEN

This article presents the study of the rheological properties and the printability of produced ceramic-polymer filaments using fused deposition method (FDM) 3D printing technology. Powder mixtures with an alumina content of 50 to 70 vol.% were fabricated by a wet processing route. A series of rheological experiments of the obtained mixtures were conducted in the temperature range from 200 to 220 °C for the commercial polylactide (PLA) powder and from 200 to 240 °C for ceramic-polymer, which corresponds to the recommended temperatures for 3D printing of commercial PLA filaments. The composition with the maximum content of alumina leads to a powdery material in which the molten polymer is insufficient to measure the rheological properties. In spite of this, the filaments were prepared from all the obtained mixtures with a tabletop single-screw extruder, the diameter and surface profile of which were analyzed. As the ceramic content increased, the diameter and surface roughness of the filaments increased. Therefore, it was only possible to print an object from a filament with the lowest ceramic content. However, the print quality of the 3D printed objects from the fabricated ceramic-polymer filament is worse (imperfect form, defects between layers) compared to the commercial PLA filament. To eliminate such defects in the future, it is necessary to conduct additional research on the development of printing modes and possibly modify the software and components of the 3D printer.

9.
Materials (Basel) ; 15(13)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35806660

RESUMEN

Coatings with a thickness from 27 to 62 µm on electron beam melted Ti-6Al-4V have been formed by micro-arc oxidation (MAO) in a silicate-hypophosphite electrolyte. MAO tests in the anode-cathode mode (50 Hz) with an anode-to-cathode current ratio of 1:1 and sum current densities 10 and 20 A/dm2 were carried out. The duration of the MAO treatment was 30 and 60 min. The effect of the processing parameters on the structural properties of the MAO treated coatings was studied. The current density and treatment time significantly affect the coating thickness and surface roughness. The values of these characteristics increase as the current density increases. The effect of thermal cycling tests on surface morphology, thickness and roughness, and elemental and phase composition of MAO coatings was analyzed. After 50 cycles of thermal cycling from +200 °C to -50 °C, no cracking or delamination of coatings was observed. Coatings formed in 30 min at a current density of 20 A/dm2 turned out to be the best in terms of such indicators as surface morphology, thickness, and roughness.

10.
Materials (Basel) ; 15(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35407750

RESUMEN

This paper presents a study of Al2O3-ZrO2 (ZTA) nanocomposites with different contents of reduced graphene oxide (rGO). The influence of the rGO content on the physico-mechanical properties of the oxide composite was revealed. Graphene oxide was obtained using a modified Hummers method. Well-dispersed ZTA-GO nanopowders were produced using the colloidal processing method. Using spark plasma sintering technology (SPS), theoretically dense composites were obtained, which also reduced GO during SPS. The microstructure, phase composition, and physico-mechanical properties of the sintered composites were studied. The sintered ZTA composite with an in situ reduced graphene content of 0.28 wt.% after the characterization showed improved mechanical properties: bending strength was 876 ± 43 MPa, fracture toughness-6.8 ± 0.3 MPa·m1/2 and hardness-17.6 ± 0.3 GPa. Microstructure studies showed a uniform zirconia distribution in the ZTA ceramics. The study of the electrical conductivity of reduced graphene oxide-containing composites showed electrical conductivity above the percolation threshold with a small content of graphene oxide (0.28 wt.%). This electrical conductivity makes it possible to produce sintered ceramics by electrical discharge machining (EDM), which significantly reduces the cost of manufacturing complex-shaped products. Besides improved mechanical properties and EDM machinability, 0.28 wt.% rGO composites demonstrated high resistance to hydrothermal degradation.

11.
Materials (Basel) ; 14(3)2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499302

RESUMEN

Potential relations of tribological characteristics of aluminum antifriction alloys with their compositions and mechanical properties were investigated. In this regard, the properties of eight aluminum alloys containing tin from 5.4% to 11% doped with lead, copper, silicon, zinc, magnesium, and titanium were studied. Mechanical properties such as hardness, strength, relative extension, and impact strength were analyzed. Within the tribological tests seizure load and wear of material were evaluated and secondary structures were studied afterwards. The absence of a definitive correlation between tribological behavior and mechanical properties was shown. It was determined that doping tin over 6% is excessive. The seizure load of the alloys increases with the magnesium content. Secondary structures of the alloys with higher wear rates contain one order less magnesium and tin.

12.
Nanomaterials (Basel) ; 10(7)2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32630782

RESUMEN

In the present work, the state of the art of the most common additive manufacturing (AM) technologies used for the manufacturing of complex shape structures of graphene-based ceramic nanocomposites, ceramic and graphene-based parts is explained. A brief overview of the AM processes for ceramic, which are grouped by the type of feedstock used in each technology, is presented. The main technical factors that affect the quality of the final product were reviewed. The AM processes used for 3D printing of graphene-based materials are described in more detail; moreover, some studies in a wide range of applications related to these AM techniques are cited. Furthermore, different feedstock formulations and their corresponding rheological behavior were explained. Additionally, the most important works about the fabrication of composites using graphene-based ceramic pastes by Direct Ink Writing (DIW) are disclosed in detail and illustrated with representative examples. Various examples of the most relevant approaches for the manufacturing of graphene-based ceramic nanocomposites by DIW are provided.

13.
Materials (Basel) ; 13(3)2020 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-32033036

RESUMEN

In this work, we report an available technique for the effective reduction of graphene oxide (GO) and the fabrication of nanostructured zirconia reduced graphene oxide powder via a hydrothermal method. Characterization of the obtained nano-hybrid structure materials was carried out using a scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR). The confirmation that GO was reduced and the uniform distribution of zirconia nanoparticles on graphene oxide sheets during synthesis was obtained due to these techniques. This has presented new opportunities and prospects to use this uncomplicated and inexpensive technique for the development of zirconia/graphene nanocomposite powders.

14.
Nanomaterials (Basel) ; 9(10)2019 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-31569355

RESUMEN

In this work, we characterized the mechanical and electrical properties of zirconia-based ceramic nanocomposites reinforced with 30 and 40 vol. % TiN and fabricated by spark plasma sintering. In addition to their improved mechanical performance, these compositions have sufficient electrical conductivity to allow wire electrical discharge machining (WEDM). The influence of WEDM variables on the roughness and the mechanical strength of samples was analyzed after each cut. The experimental results showed that the roughness of machined surfaces can be reduced by variations in WEDM manufacturing regimes, and, consequently, a drastic drop in flexural strength of workpieces can be avoided. Furthermore, the composites with higher content and homogeneous distribution of the conductive phase exhibited better surface quality as well.

15.
Nanomaterials (Basel) ; 9(2)2019 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-30691050

RESUMEN

In the present work, the tribological properties of graphene-reinforced Al2O3-SiCw ceramic nanocomposites fabricated by spark plasma sintering were studied against alumina ball. Compared with pure ceramic, the wear resistance of these nanocomposites was approximately two times higher regardless of the applied load. It was confirmed by Raman spectroscopy that the main factor for the improvement of the wear resistance of the Al2O3-SiCw/Graphene materials was related to the formation of protecting tribolayer on worn surfaces, which leads to enough lubrication to reduce both the friction coefficient, and wear rate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...