Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Aerosp Med Hum Perform ; 93(5): 406-414, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35551727

RESUMEN

BACKGROUND: Virtual reality (VR) is an effective technique to reduce cost and increase fidelity in training programs. In VR, visual and vestibular cues are often in conflict, which may result in simulator-induced motion sickness. The purpose of this study is to investigate the integration of Galvanic Vestibular Stimulation (GVS) with a VR flight training simulator by assessing flight performance, secondary task performance, simulator sickness and presence.METHODS: There were 20 participants who performed 2 separate VR flight simulation sessions, with and without GVS (control). Flight performance, secondary task performance, and electrogastrogram were measured during VR flight simulation. The standardized simulator sickness and presence questionnaires were administered.RESULTS: Electrogastrogram measures such as dominant power instability coefficient (DPIC) and percentages of bradygastric waves (%B) were lower in the GVS session than the control session in the flight simulation (DPIC: 0.44 vs. 0.54; %B: 21.2% vs. 30.5%) and postflight (DPIC: 0.38 vs. 0.53; %B: 22.8% vs. 31.4%) periods. Flight performance (#hit-gates) was improved in the GVS session compared to the control (GVS: 17, Control: 15.5). Secondary task performance (%hits) was improved with GVS for the Easy task (GVS: 55.5%, Control: 43.1%).DISCUSSION: This study demonstrates the potential of synchronizing GVS with visual stimuli in VR flight training to reduce visual-vestibular sensory conflict to improve fidelity and performance. These results provide initial evidence, but continued research is warranted to further understand the benefits and applications of GVS in VR simulator training.Pradhan GN, Galvan-Garza RC, Perez AM, Stepanek J, Cevette MJ. Visual vestibular conflict mitigation in virtual reality using galvanic vestibular stimulation. Aerosp Med Hum Perform. 2022; 93(5):406-414.


Asunto(s)
Mareo por Movimiento , Vestíbulo del Laberinto , Realidad Virtual , Simulación por Computador , Humanos , Análisis y Desempeño de Tareas , Vestíbulo del Laberinto/fisiología
2.
Front Neurogenom ; 3: 883962, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-38235479

RESUMEN

Background: Vestibular flight illusions remain a significant source of concern for aviation training. Most fixed-based simulation training environments, including new virtual reality (VR) technology, lack the ability to recreate vestibular flight illusions as vestibular cues cannot be provided without stimulating the vestibular end organs. Galvanic vestibular stimulation (GVS) has long been used to create vestibular perception. The purpose of this study is to evaluate the ability of GVS to simulate common flight illusions by intentionally providing mismatched GVS during flight simulation scenarios in VR. Methods: Nineteen participants performed two flight simulation tasks-take off and sustained turn-during two separate VR flight simulation sessions, with and without GVS (control). In the GVS session, specific multi-axis GVS stimulation (i.e., electric currents) was provided to induce approximate somatogravic and Coriolis illusions during the take-off and sustained turn tasks, respectively. The participants used the joystick to self-report their subjective motion perception. The angular joystick movement along the roll, yaw, and pitch axes was used to measure cumulative angular distance and peak angular velocity as continuous variables of motion perception across corresponding axes. Presence and Simulator Sickness Questionnaires were administered at the end of each session. Results: The magnitude and variability of perceived somatogravic illusion during take-off task in the form of cumulative angular distance (p < 0.001) and peak velocity (p < 0.001) along the pitch-up axis among participants were significantly larger in the GVS session than in the NO GVS session. Similarly, during the sustained turn task, perceived Coriolis illusion in the form of cumulative angular distances (roll: p = 0.005, yaw: p = 0.015, pitch: p = 0.007) and peak velocities (roll: p = 0.003, yaw: p = 0.01, pitch: p = 0.007) across all three axes were significantly larger in the GVS session than in the NO GVS session. Subjective nausea was low overall, but significantly higher in the GVS session than in the NO GVS session (p = 0.026). Discussion: Our findings demonstrated that intentionally mismatched GVS can significantly affect motion perception and create flight illusion perceptions during fixed-based VR flight simulation. This has the potential to enhance future training paradigms, providing pilots the ability to safely experience, identify, and learn to appropriately respond to flight illusions during ground training.

3.
Front Psychol ; 9: 661, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867641

RESUMEN

Factors that contribute to overcoming decision-making biases in later life pose an important investigational question given the increasing older adult population. Limited empirical evidence exists and the literature remains equivocal of whether increasing age is associated with elevated susceptibility to decision-making biases such as framing effects. Research into the individual differences contributing to decision-making ability may offer better understanding of the influence of age in decision-making ability. Changes in cognition underlying decision-making have been shown with increased age and may contribute to individual variability in decision-making abilities. This study had three aims; (1) to understand the influence of age on susceptibility to decision-making biases as measured by framing effects across a large, continuous age range; (2) to examine influence of cognitive abilities that change with age; and (3) to understand the influence of individual factors such as gender and education on susceptibility to framing effects. 200 individuals (28-79 years of age) were tested on a large battery of cognitive measures in the domains of executive function, memory and complex attention. Findings from this study demonstrated that cognitive abilities such as strategic control and delayed memory better predicted susceptibility to framing biases than age. The current findings demonstrate that age may not be as influential a factor in decision-making as cognitive ability and cognitive reserve. These findings motivate future studies to better characterize cognitive ability to determine decision-making susceptibilities in aging populations.

4.
Front Hum Neurosci ; 10: 338, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27462210

RESUMEN

Insidious declines in normal aging are well-established. Emerging evidence suggests that non-pharmacological interventions, specifically cognitive and physical training, may counter diminishing age-related cognitive and brain functions. This randomized trial compared effects of two training protocols: cognitive training (CT) vs. physical training (PT) on cognition and brain function in adults 56-75 years. Sedentary participants (N = 36) were randomized to either CT or PT group for 3 h/week over 12 weeks. They were assessed at baseline-, mid-, and post-training using neurocognitive, MRI, and physiological measures. The CT group improved on executive function whereas PT group's memory was enhanced. Uniquely deploying cerebral blood flow (CBF) and cerebral vascular reactivity (CVR) MRI, the CT cohort showed increased CBF within the prefrontal and middle/posterior cingulate cortex (PCC) without change to CVR compared to PT group. Improvements in complex abstraction were positively associated with increased resting CBF in dorsal anterior cingulate cortex (dACC). Exercisers with higher CBF in hippocampi bilaterally showed better immediate memory. The preliminary evidence indicates that increased cognitive and physical activity improves brain health in distinct ways. Reasoning training enhanced frontal networks shown to be integral to top-down cognitive control and brain resilience. Evidence of increased resting CBF without changes to CVR implicates increased neural health rather than improved vascular response. Exercise did not improve cerebrovascular response, although CBF increased in hippocampi of those with memory gains. Distinct benefits incentivize testing effectiveness of combined protocols to strengthen brain health.

5.
J Neurotrauma ; 31(17): 1478-85, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24738754

RESUMEN

Diffusion tensor imaging (DTI) has been useful in showing compromise after traumatic axonal injury (TAI) at the chronic stage; however, white matter (WM) compromise from acute stage of TAI to chronic stage is not yet well understood. This study aims to examine changes in WM integrity following TAI by obtaining DTI, on average, 1 d post injury and again approximately seven months post-injury. Sixteen patients with complicated mild to severe brain injuries consistent with TAI were recruited in the intensive care unit of a Level I trauma center. Thirteen of these patients were studied longitudinally over the course of the first seven months post-injury. The first scan occurred, on average, 1 d after injury and the second an average of seven months post-injury. Ten healthy individuals, similar to the cohort of patients, were recruited as controls. Whole brain WM and voxel-based analyses of DTI data were conducted. DTI metrics of interest included: fractional anisotropy (FA), mean diffusivity, axial diffusivity (AD), and radial diffusivity (RD). tract-based spatial statistics were used to examine DTI metrics spatially. Acutely, AD and RD increased and RD positively correlated with injury severity. Longitudinal analysis showed reduction in FA and AD (p<0.01), but no change in RD. Possible explanations for the microstructural changes observed over time are discussed.


Asunto(s)
Lesión Axonal Difusa/patología , Imagen de Difusión Tensora , Sustancia Blanca/patología , Adolescente , Adulto , Anisotropía , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Recuperación de la Función , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...