Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Physiol ; 13: 995473, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36267587

RESUMEN

Polycystin-2 (PC2, TRPP2) is a Ca2+ permeable nonselective cation channel whose dysfunction generates autosomal dominant polycystic kidney disease (ADPKD). PC2 is present in different cell locations, including the primary cilium of renal epithelial cells. However, little is known as to whether PC2 contributes to the primary cilium structure. Here, we explored the effect(s) of external Ca2+, PC2 channel blockers, and PKD2 gene silencing on the length of primary cilia in wild-type LLC-PK1 renal epithelial cells. Confluent cell monolayers were fixed and immuno-labeled with an anti-acetylated α-tubulin antibody to identify primary cilia and measure their length. Although primary cilia length measurements did not follow a Normal distribution, the data were normalized by Box-Cox transformation rendering statistical differences under all experimental conditions. Cells exposed to high external Ca2+ (6.2 mM) decreased a 13.5% (p < 0.001) primary cilia length as compared to controls (1.2 mM Ca2+). In contrast, the PC2 inhibitors amiloride (200 µM) and LiCl (10 mM), both increased primary ciliary length by 33.2% (p < 0.001), and 17.4% (p < 0.001), respectively. PKD2 gene silencing by siRNA elicited a statistically significant, 10.3% (p < 0.001) increase in primary cilia length compared to their respective scrambled RNA transfected cells. The data indicate that conditions that regulate PC2 function or gene expression modify the length of primary cilia in renal epithelial cells. Blocking of PC2 mitigates the effects of elevated external Ca2+ concentration on primary cilia length. Proper regulation of PC2 function in the primary cilium may be essential in the onset of mechanisms that trigger cyst formation in ADPKD.

2.
Sci Rep ; 9(1): 12398, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31455820

RESUMEN

Microtubules (MTs) are cytoskeletal structures that play a central role in a variety of cell functions including cell division and cargo transfer. MTs are also nonlinear electrical transmission lines that produce and conduct electrical oscillations elicited by changes in either electric field and/or ionic gradients. The oscillatory behavior of MTs requires a voltage-sensitive gating mechanism to enable the electrodiffusional ionic movement through the MT wall. Here we explored the electrical response of non-oscillating rat brain MT sheets to square voltage steps. To ascertain the nature of the possible gating mechanism, the electrical response of non-oscillating rat brain MT sheets (2D arrays of MTs) to square pulses was analyzed under voltage-clamping conditions. A complex voltage-dependent nonlinear charge movement was observed, which represented the summation of two events. The first contribution was a small, saturating, voltage-dependent capacitance with a maximum charge displacement in the range of 4 fC/µm2. A second, major contribution was a non-saturating voltage-dependent charge transfer, consistent with the properties of a multistep memristive device. The memristive capabilities of MTs could drive oscillatory behavior, and enable voltage-driven neuromorphic circuits and architectures within neurons.


Asunto(s)
Encéfalo/metabolismo , Microtúbulos/fisiología , Animales , Fenómenos Electrofisiológicos/efectos de los fármacos , Microtúbulos/química , Cloruro de Potasio/farmacología , Ratas
3.
PLoS One ; 13(8): e0202029, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30133487

RESUMEN

Ion channels are transmembrane proteins that mediate ion transport across biological membranes. Ion channel function is traditionally characterized by electrical parameters acquired with techniques such as patch-clamping and reconstitution in lipid bilayer membranes (BLM) that provide relevant information such as ionic conductance, selectivity, and gating properties. High resolution structural information of ion channels however, requires independent technologies, of which atomic force microscopy (AFM) is the only one that provides topological features of single functional channel proteins in their native environments. To date practically no data exist on direct correlations between electrical features and topological parameters from functional single channel complexes. Here, we report the design and construction of a BLM reconstitution microchamber that supports the simultaneous recording of electrical currents and AFM imaging from single channel complexes. As proof-of-principle, we tested the technique on polycystin-2 (PC2, TRPP2), a TRP channel family member from which we had previously elucidated its tetrameric topology by AFM imaging, and single channel currents by the BLM technique. The experimental setup provided direct structural-functional correlates from PC2 single channel complexes that disclosed novel topological changes between the closed and open sub-conductance states of the functional channel, namely, an inverse correlation between conductance and height of the channel. Unexpectedly, we also disclosed intrinsic PC2 mechanosensitivity in response to external forces. The platform provides a suitable means of accessing topological information to correlate with ion channel electrical parameters essential to understand the physiology of these transmembrane proteins.


Asunto(s)
Fenómenos Electrofisiológicos , Membrana Dobles de Lípidos/química , Microscopía de Fuerza Atómica , Canales Catiónicos TRPP/química , Canales Catiónicos TRPP/fisiología , Activación del Canal Iónico , Técnicas de Placa-Clamp , Biosíntesis de Proteínas , Proteolípidos/química , Transcripción Genética
4.
Sci Rep ; 8(1): 11899, 2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-30093720

RESUMEN

Microtubules (MTs) are long cylindrical structures of the cytoskeleton that control cell division, intracellular transport, and the shape of cells. MTs also form bundles, which are particularly prominent in neurons, where they help define axons and dendrites. MTs are bio-electrochemical transistors that form nonlinear electrical transmission lines. However, the electrical properties of most MT structures remain largely unknown. Here we show that bundles of brain MTs spontaneously generate electrical oscillations and bursts of electrical activity similar to action potentials. Under intracellular-like conditions, voltage-clamped MT bundles displayed electrical oscillations with a prominent fundamental frequency at 39 Hz that progressed through various periodic regimes. The electrical oscillations represented, in average, a 258% change in the ionic conductance of the MT structures. Interestingly, voltage-clamped membrane-permeabilized neurites of cultured mouse hippocampal neurons were also capable of both, generating electrical oscillations, and conducting the electrical signals along the length of the structure. Our findings indicate that electrical oscillations are an intrinsic property of brain MT bundles, which may have important implications in the control of various neuronal functions, including the gating and regulation of cytoskeleton-regulated excitable ion channels and electrical activity that may aid and extend to higher brain functions such as memory and consciousness.


Asunto(s)
Potenciales de Acción/fisiología , Axones/fisiología , Encéfalo/metabolismo , Dendritas/fisiología , Microtúbulos/fisiología , Neuronas/fisiología , Animales , Axones/metabolismo , Células Cultivadas , Dendritas/metabolismo , Conductividad Eléctrica , Fenómenos Electrofisiológicos , Ratones , Microtúbulos/metabolismo , Neuronas/metabolismo , Ratas
5.
Sci Rep ; 8(1): 6804, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29717151

RESUMEN

Current insights into the mosquito dehydration response rely on studies that examine specific responses but ultimately fail to provide an encompassing view of mosquito biology. Here, we examined underlying changes in the biology of mosquitoes associated with dehydration. Specifically, we show that dehydration increases blood feeding in the northern house mosquito, Culex pipiens, which was the result of both higher activity and a greater tendency to land on a host. Similar observations were noted for Aedes aegypti and Anopheles quadrimaculatus. RNA-seq and metabolome analyses in C. pipiens following dehydration revealed that factors associated with carbohydrate metabolism are altered, specifically the breakdown of trehalose. Suppression of trehalose breakdown in C. pipiens by RNA interference reduced phenotypes associated with lower hydration levels. Lastly, mesocosm studies for C. pipiens confirmed that dehydrated mosquitoes were more likely to host feed under ecologically relevant conditions. Disease modeling indicates dehydration bouts will likely enhance viral transmission. This dehydration-induced increase in blood feeding is therefore likely to occur regularly and intensify during periods when availability of water is low.


Asunto(s)
Aedes/efectos de los fármacos , Anopheles/efectos de los fármacos , Culex/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Modelos Estadísticos , Agua/farmacología , Aedes/fisiología , Animales , Anopheles/fisiología , Metabolismo de los Hidratos de Carbono/genética , Culex/fisiología , Deshidratación/metabolismo , Conducta Alimentaria/fisiología , Femenino , Expresión Génica , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Metaboloma , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Trehalasa/antagonistas & inhibidores , Trehalasa/genética , Trehalasa/metabolismo , Trehalosa/metabolismo , Agua/metabolismo
6.
Exp Cell Res ; 350(1): 50-61, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27836810

RESUMEN

Polycystin-2 (PC2, TRPP2) is a nonselective cation channel whose dysfunction is associated with the onset of autosomal dominant polycystic kidney disease (ADPKD). PC2 contributes to Ca2+ transport and cell signaling in renal epithelia and other tissues. Little is known however, as to the external Ca2+ regulation of PC2 channel function. In this study, we explored the effect of external Ca2+ on endogenous PC2 in wild type LLC-PK1 renal epithelial cells. We obtained whole cell currents at different external Ca2+ concentrations, and observed that the basal whole cell conductance in normal Ca2+(1.2mM), decreased by 30.2% in zero (nominal) Ca2+ and conversely, increased by 38% in high external Ca2+(6.2mM). The high Ca2+-increased whole cell currents were completely inhibited by either PC2 gene silencing, or intracellular dialysis with active, but not denatured by boiling, PC2 antibody. Exposure of cells to high Ca2+ was also associated with relocation of PC2 to the plasma membrane. To explore whether a Ca2+ sensing receptor (CaSR) was implicated in the external Ca2+ modulation of PC2 currents, we tested the effect of the CaSR agonists, spermine and the calcimimetic R-568, which largely mimicked the effect of high Ca2+ under Ca2+-free conditions. The CaSR agonist gentamicin also increased the PC2 currents in the presence of normal Ca2+. The presence of CaSR was confirmed by immunocytochemistry, which partially colocalized with the intracellular PC2 protein, in an external Ca2+-dependent manner. The data support a novel Ca2+ sensing mechanism for PC2 expression and functional regulation in renal epithelial cells.


Asunto(s)
Calcio/metabolismo , Células Epiteliales/metabolismo , Riñón/metabolismo , Canales Catiónicos TRPP/metabolismo , Animales , Membrana Celular/metabolismo , Porcinos
7.
Sci Rep ; 6: 27143, 2016 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-27256791

RESUMEN

Microtubules (MTs) are unique components of the cytoskeleton formed by hollow cylindrical structures of αß tubulin dimeric units. The structural wall of the MT is interspersed by nanopores formed by the lateral arrangement of its subunits. MTs are also highly charged polar polyelectrolytes, capable of amplifying electrical signals. The actual nature of these electrodynamic capabilities remains largely unknown. Herein we applied the patch clamp technique to two-dimensional MT sheets, to characterize their electrical properties. Voltage-clamped MT sheets generated cation-selective oscillatory electrical currents whose magnitude depended on both the holding potential, and ionic strength and composition. The oscillations progressed through various modes including single and double periodic regimes and more complex behaviours, being prominent a fundamental frequency at 29 Hz. In physiological K(+) (140 mM), oscillations represented in average a 640% change in conductance that was also affected by the prevalent anion. Current injection induced voltage oscillations, thus showing excitability akin with action potentials. The electrical oscillations were entirely blocked by taxol, with pseudo Michaelis-Menten kinetics and a KD of ~1.29 µM. The findings suggest a functional role of the nanopores in the MT wall on the genesis of electrical oscillations that offer new insights into the nonlinear behaviour of the cytoskeleton.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...